Skip to main content

Lithium Isotopes as Tracers in Marine and Terrestrial Environments

  • Chapter
  • First Online:
Book cover Handbook of Environmental Isotope Geochemistry

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

The investigation and the use of lithium isotopes as tracers of water-rock interactions at low and high temperature have significantly developed over the last 10 years. This chapter relates our current understanding of lithium isotope and elemental behaviour in the Earth’s surface environment. In the introduction, we provide information on the chemical properties and behaviour of lithium, its occurrence and applications. The first section reviews the techniques used for the measurement of Li isotopes. The second section outlines the primary sources of Li in the environment and their potential impact on the hydrological cycle. The third and fourth sections investigate the impact of chemical weathering of continental rocks and oceanic crust, respectively. Finally, the last section assesses marine records of lithium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson MA, Bertsch PM, Miller WP (1989) Exchange and apparent fixation of lithium in selected soils and clay minerals. Soil Sci 148:46–52

    Google Scholar 

  • Anghel I, Turin HJ, Reimus PW (2002) Lithium sorption to Yucca Mountain tuffs. Appl Geochem 17:819–824

    Google Scholar 

  • Bach RO (ed) (1985) Lithium – current applications in science, medicine and technology. Wiley, New York

    Google Scholar 

  • Bayon G, Vigier N, Burton KW, Brenot A, Carignan J, Chu N-C, Etoubleau J (2006) The control of weathering process on riverine and seawater hafnium isotope ratios. Geology 34:433–436

    Google Scholar 

  • Benton LD, Ryan JG, Savov IP (2004) Lithium abundance and isotope systematics of forearc serpentinites, conical seamount, Mariana forearc: insights into the mechanics of slab-mantle exchange during subduction. Geochem Geophys Geosyst 8. doi:10.1029/2004GC000708

  • Blum JD, Erel Y (1995) A silicate weathering mechanism linking increase in marine 87Sr/86Sr with global glaciation. Nature 373:415–418

    Google Scholar 

  • Brunskill GJ, Zagorskis I, Pfitzner J (2003) Geochemical mass balance for lithium, boron, and strontium in the Gulf of Papua, Papua New Guinea (Project TROPICS). Geochim Cosmochim Acta 67:3365–3383

    Google Scholar 

  • Burles S, Nollett KM, Turner MS (2001) Big bang nucleosynthesis predictions for precise cosmology. Astrophys J 552:L1–L5

    Google Scholar 

  • Carignan J, Cardinal D, Eisenhauer A, Galy A, Rehkämper M, Wombacher F, Vigier N (2004) A reflection on Mg, Ca, Cd, Li and Si isotopic measurements and related reference materials. Geostand Geoanal Res 28:139–148

    Google Scholar 

  • Carignan J, Vigier N, Millot R (2007) Three secondary reference materials for Li isotopic measurements: 7Li-N, 6Li-N and LiCl-N. Geostand Geoanal Res 31:7–12

    Google Scholar 

  • Chan LH (1987) Lithium isotope analysis by thermal ionization mass spectrometry of lithium tetraborate. Anal Chem 59:2662–2665

    Google Scholar 

  • Chan L-H, Edmond JM (1988) Variation of lithium isotope composition in the marine environment: a preliminary report. Geochim Cosmochim Acta 52:1711–1717

    Google Scholar 

  • Chan L-H, Frey FA (2003) Lithium isotope geochemistry of the Hawaiian plume: results from the Hawaiian Scientific Drilling Project and Koolau Volcano. Geochem Geophys Geosyst 4:8707

    Google Scholar 

  • Chan L-H, Hein JR (2007) Lithium contents and isotopic compositions of ferromanganese deposits from the global ocean. Deep Sea Res I Top Stud Oceanogr 54:1147–1162

    Google Scholar 

  • Chan LH, Kastner M (2000) Lithium isotopic composition of pore fluids and sediments in the Costa Rica subduction zone: implications for fluid processes and sediment contribution to the arc volcanoes. Earth Planet Sci Lett 183:275–290

    Google Scholar 

  • Chan L-H, Edmond JM, Thompson G, Gillis K (1992) Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans. Earth Planet Sci Lett 108:151–160

    Google Scholar 

  • Chan L-H, Edmond JM, Thompson G (1993) A lithium isotope study of hot springs and metabasalts from Mid-Ocean ridge hydrothermal systems. J Geophys Res 98:9653–9659

    Google Scholar 

  • Chan L-H, Gieskes JM, You C-F, Edmond JM (1994) Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guyamas Basin, Gulf of California. Geochim Cosmochim Acta 58:4443–4454

    Google Scholar 

  • Chan L-H, Alt JC, Teagle DAH (2002) Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth Planet Sci Lett 201:187–201

    Google Scholar 

  • Chan LH, Leeman WP, Plank T (2006) Lithium isotopic composition of marine sediments. Geochem Geophys Geosyst 7:Q06005. doi:10.1029/2005GC001202

    Article  Google Scholar 

  • Chaussidon M, Robert F (1998) 7Li/6Li and 11B/10B variations in chondrules from the Semarkona unequilibrated chondrite. Earth Planet Sci Lett 164:577–589

    Google Scholar 

  • Colten VA, Hanor JS (1984) Variations in dissolved lithium in the Mississippi River and Mississippi River Estuary, Louisiana, USA, during Low River stage. Chem Geol 47:85–96

    Google Scholar 

  • Comans RNJ, Haller M, De Preter P (1991) Sorption of cesium on illite: non-equilibrium behaviour and reversibility. Geochim Cosmochim Acta 55:433–440

    Google Scholar 

  • Decitre S, Deloule E, Resiberg L, James R, Agrinier P, Mével C (2002) Behaviour of Li and its isotopes during serpentinization of oceanic peridotites. Geochem Geophys Geosyst 3. doi:10.1029/2001GC000178

    Google Scholar 

  • Delaney ML, Boyle EA (1986) Lithium in foraminiferal shells: implications for high-temperature hydrothermal circulation fluxes and oceanic crustal generation rates. Earth Planet Sci Lett 80:91–105

    Google Scholar 

  • Elderfield H, Schultz A (1996) Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Planet Sci 24:191–224

    Google Scholar 

  • Elliott T, Thomas A, Jeffcoate A, Niu Y (2006) Lithium isotope evidence for subduction enriched mantle in the source of mid-ocean-ridge basalts. Nature 443:565–568

    Google Scholar 

  • Falkner KK, Chruch M, Measures CI, LeBaron G, Thouron D, Jeandel C, Strodal MC, Gill GA, Mortlock R, Froelich P, Chan LH (1997) Minor and trace element chemistry of Lake Baikal, its tributaries, and surrounding hot springs. Limnol Oceanogr 42:329–345

    Google Scholar 

  • Hall JM, Chan L-H (2004) Li/Ca in multiple species of benthic and planktonic foraminifera: thermocline, latitudinal, and glacial-interglacial variation. Geochim Cosmochim Acta 68:529–545

    Google Scholar 

  • Hall JM, Chan L-H, McDonough WF, Turekian KK (2005) Determination of the lithium isotopic composition of planktic foraminifera and its application as a paleo-seawater proxy. Mar Geol 217:255–265

    Google Scholar 

  • Hathorne EC, James RH (2006) Temporal record of lithium in seawater: a tracer for silicate weathering? Earth Planet Sci Lett 246:393–406

    Google Scholar 

  • Hathorne EC, James RH, Lampitt RS (2009) Environmental versus biomineralization controls on the intratest variation in the trace element composition of the planktonic foraminifera G. inflata and G. scitula. Paleoceanography 24:PA4204. doi:10.1029/2009PA001742

    Article  Google Scholar 

  • Heier KS, Billings GK (1970) Lithium. In: Wedepohl KH (ed) Handbook of geochemistry, vol II-1. Springer, Berlin, pp 3-A-1–3-O-1

    Google Scholar 

  • Henderson GM, Burton KW (1999) Using (234U/238U) to assess diffusion rates of isotope tracers in ferromanganese crusts. Earth Planet Sci Lett 170:169–179

    Google Scholar 

  • Hoefs J, Sywall M (1997) Lithium isotope composition of quaternary and tertiary biogene carbonates and a global lithium isotope balance. Geochim Cosmochim Acta 61:2679–2690

    Google Scholar 

  • Huh Y, Chan LH, Zhang L, Edmond JM (1998) Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget. Geochim Cosmochim Acta 62:2039–2051

    Google Scholar 

  • Huh Y, Chan L-H, Edmond JM (2001) Lithium isotopes as a probe of weathering processes: Orinoco River. Earth Planet Sci Lett 194:189–199

    Google Scholar 

  • Huh Y, Chan L-H, Chadwick O (2004) Behaviour of lithium and its isotopes during weathering of Hawaiian basalts. Geochem Geophys Geosyst 5. doi:10.1029/2004GC000729

    Google Scholar 

  • James RH, Palmer MR (2000a) The lithium isotope composition of international rock standards. Chem Geol 166:319–326

    Google Scholar 

  • James RH, Palmer MR (2000b) Marine geochemical cycles of the alkali elements and boron: the role of sediments. Geochim Cosmochim Acta 63:3111–3122

    Google Scholar 

  • James RH, Rudnicki MD, Palmer MR (1999) The alkali element and boron geochemistry of the Escanaba Trough sediment-hosted hydrothermal system: the role of sediments. Earth Planet Sci Lett 171:157–169

    Google Scholar 

  • James RH, Allen DE, Seyfried WE Jr (2003) An experimental study of alteration of oceanic crust and terrigenous sediments at moderate temperatures (51 to 350°C): insights as to chemical processes in near-shore ridge-flank hysrothermal systems. Geochim Cosmochim Acta 67:681–691

    Google Scholar 

  • Jeffcoate AB, Elliott T, Thomas A, Bouman C (2004) Precise, small sample size determinations of lithium isotopic compositions of geological reference materials and modern seawater by MC-ICP-MS. Geostand Geoanal Res 28:161–172

    Google Scholar 

  • Jeffcoate AB, Elliott T, Kasemann SA, Ionov D, Cooper K, Brooker R (2007) Li isotope fractionation in peridotites and mafic melts. Geochim Cosmochim Acta 71:202–218

    Google Scholar 

  • Jiang X, Lin X, Yao D, Zhai S, Guo W (2007) Geochemistry of lithium in marine ferromanganese oxide deposits. Deep Sea Res I 54:85–98

    Google Scholar 

  • Kasemann SA, Jeffcoate AB, Elliott T (2005) Lithium isotope composition of basalt glass reference material. Ann Chem 77:5251–5257

    Google Scholar 

  • Kisakurek B, Widdowson M, James RH (2004) Behaviour of Li isotopes during continental weathering: the Bidar laterite profile. India Chem Geol 212:27–44

    Google Scholar 

  • Kisakurek B, James RH, Harris NBW (2005) Li and delta Li-7 in Himalayan rivers: proxies for silicate weathering? Earth Planet Sci Lett 237:387–401

    Google Scholar 

  • Korn AJ, Grundahl F, Richard O, Barklem PS, Mashonkina L, Collet R, Piskunov N, Gustafsson (2006) A probable stellar solution to the cosmological lithium discrepancy. Nature 442:657–659

    Google Scholar 

  • Kosler J, Kucera M, Sylvester P (2001) Precise measurement of Li isotopes in planktonic foraminiferal tests by quadrupole ICPMS. Chem Geol 181:169–179

    Google Scholar 

  • Lear CH, Rosenthal Y (2006) Benthic foraminiferal Li/Ca: insights into Cenozoic seawater carbonate saturation state. Geology 34:985–988

    Google Scholar 

  • Lemarchand E, Chabaux F, Vigier N, Millot R, Pierret M-C (2010) Lithium isotope systematics in a forested granitic catchment (Strengbach, Vosges Mountains, France). Geochim Cosmochim Acta 74:4612–4628

    Google Scholar 

  • Marriott CS, Henderson GM, Belshaw NS, Tudhope AW (2004a) Temperature dependence of δ7Li, δ44Ca and Li/Ca incorporation into calcium carbonate. Earth Planet Sci Lett 222:615–624

    Google Scholar 

  • Marriott CS, Henderson GM, Crompton R, Staubwasser M, Shaw S (2004b) Effect of mineralogy, salinity, and temperature on Li/Ca and Li isotope composition of calcium carbonate. Chem Geol 212:5–15

    Google Scholar 

  • Milliman JD (1993) Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Glob Biogeochem Cycles 7:927–957

    Google Scholar 

  • Millot R, Guerrot C, Vigier N (2004) Accurate and high-precision measurement of lithium isotopes in two reference materials by MC-ICP-MS. Geostand Geoanal Res 28:153–159

    Google Scholar 

  • Millot R, Petelet-Giraud E, Guerrot C, Négrel P (2010a) Multi-isotopic composition (δ7Li–δ11B–δD–δ18O) of rainwaters in France: origin and spatio-temporal characterization. Appl Geochem 25:1510–1524

    Google Scholar 

  • Millot R, Vigier N, Gaillardet J (2010b) Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin, Canada. Geochim Cosmochim Acta 74:3897–3912

    Google Scholar 

  • Millot R, Scaillet B, Sanjuan B (2010c) Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique (French West Indies) and experimental approach. Geochim Cosmochim Acta 74:1852–1871

    Google Scholar 

  • Moriguti T, Nakamura E (1998) High-yield lithium separation and precise isotopic analysis for natural rock and aqueous samples. Chem Geol 145:91–104

    Google Scholar 

  • Nishio Y, Okamura K, Tanimizu M, Ishikawa T, Sano Y (2010) Lithium and strontium isotopic systematics of waters around Ontake volcano, Japan: implications for deep-seated fluids and earthquake swarms. Earth Planet Sci Lett 297:567–576

    Google Scholar 

  • O’Neil JR (1986) Theoretical and experimental aspects of isotopic fractionation. Rev Mineral 16:1–40

    Google Scholar 

  • Olive KA, Schramm DN (1992) Astrophysical 7Li as a product of Big Bang nucleosynthesis and galactic cosmic-ray spallation. Nature 360:439–442

    Google Scholar 

  • Olsher U, Izatt RM, Bradshaw JS, Dalley NK (1991) Coordination chemistry of lithium ion: a crystal and molecular structure review. Chem Rev 91:137–164

    Google Scholar 

  • Palko AA, Drury JS, Begun GM (1976) Lithium isotope separation factors of some two-phase equilibrium systems. J Chem Phys 64:1828–1837

    Google Scholar 

  • Pistiner JS, Henderson GM (2003) Lithium-isotope fractionation during continental weathering processes. Earth Planet Sci Lett 214:327–339

    Google Scholar 

  • Pogge von Strandmann PAE, Burton KW, James RH, van Calsteren P, Gíslason SR, Mokadem F (2006) Riverine behaviour of uranium and lithium isotopes in an actively glaciated basaltic terrain. Earth Planet Sci Lett 251:134–147

    Google Scholar 

  • Pogge von Strandmann PAE, James RH, van Calsteren P, Gíslason SR, Burton KW (2008) Lithium, magnesium and uranium isotope behaviour in the estuarine environment of basaltic islands. Earth Planet Sci Lett 274:462–471

    Google Scholar 

  • Pogge von Strandmann PAE, Burton KW, James RH, van Calsteren P, Gíslason SR (2010) Assessing the role of climate on uranium and lithium isotope behaviour in rivers draining a basaltic terrain. Chem Geol 270:227–239

    Google Scholar 

  • Qi HP, Coplen TB, Wang QZ, Wang YH (1997) Unnatural isotopic composition of lithium reagents. Anal Chem 69:4076–4078

    Google Scholar 

  • Raiswell R, Tranter M, Benning LG, Siegert M, De’ath R, Huybrechts P, Payne T (2006) Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: implications for iron delivery to the oceans. Geochim Cosmochim Acta 70:2765–2780

    Google Scholar 

  • Rollion-Bard C, Vigier N, Meibom A, Blamart D, Reynaud S, Rodolfo-Metalpa R, Martin S, Gattuso J-P (2009) Effect of environmental conditions and skeletal ultrastructure on the Li isotopic composition of scleractinian corals, Earth Planet. Sci Lett 286:63–70. doi:10.1016/j.epsl.2009.06.015

    Article  Google Scholar 

  • Rosner M, Ball L, Peucker-Ehrenbrink B, Blusztajn J, Bach W, Erzinger J (2007) A simplified, accurate and fast method for lithium isotope analysis of rocks and fluids, and δ7Li values of seawater and rock reference materials. Geostand Geoanal Res 31:77–88

    Google Scholar 

  • Rudnick RL, Tomascak PB, Njo HB, Gardner LR (2004) Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina. Chem Geol 212:45–57

    Google Scholar 

  • Savov IP, Ryan JG, D’Antonio M, Kelley K, Mattie P (2005) Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: implications for the elemental recycling at subduction zones. Geochem Geophys Geosyst 6:Q04J15. doi:10.1029/2004GC000777

    Article  Google Scholar 

  • Scholz F, Hensen C, Reitz A, Romer RL, Liebetrau V, Meixner A, Weise SM, Haeckel M (2009) Isotopic evidence (87Sr/86Sr, δ7Li) for alteration of the oceanic crust at deep-rooted mud volcanoes in the Gulf of Cadiz, NE Atlantic Ocean original research. Geochim Cosmochim Acta 73:5444–5459

    Google Scholar 

  • Scholz F, Hensen C, DeLange GJ, Haeckel M, Liebetrau V, Meixner A, Reitz A, Romer RL (2010) Lithium isotope geochemistry of marine pore waters – insights from cold seep fluids. Geochim Cosmochim Acta 74:3459–3475

    Google Scholar 

  • Schou M (1988) Lithium treatment of manic-depressive illness – past, present and perspectives. J Am Med Assoc 259:1834–1836

    Google Scholar 

  • Seyfried WE Jr, Chen X, Chan L-H (1998) Trace element mobility and lithium isotopic exchange during hydrothermal alteration of seafloor weathered basalt: an experimental study at 350°C, 500 bars. Geochim Cosmochim Acta 62:949–960

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:751–767

    Google Scholar 

  • Spite M, Spite F (1982) Lithium abundance at the formation of the galaxy. Nature 297:483–485

    Google Scholar 

  • Stoffyn-Egli P (1982) Conservative behaviour of dissolved lithium in estuarine waters. Estuar Coast Shelf Sci 14:577–587

    Google Scholar 

  • Stoffyn-Egli P, Mackenzie FT (1984) Mass balance of dissolved lithium in the oceans. Geochim Cosmochim Acta 48:859–872

    Google Scholar 

  • Stoll PM, Stokes PE, Okamoto M (2001) Lithium isotopes: differential effects on renal function and histology. Bipolar Disord 3:174–180

    Google Scholar 

  • Symons EA (1985) Lithium isotope separation: a review of possible techniques. Sep Sci Tech 20:633–651

    Google Scholar 

  • Taylor TI, Urey HC (1938) Fractionation of the lithium and potassium isotopes by chemical exchange with zeolites. J Chem Phys 6:429–438

    Google Scholar 

  • Teng F-Z, McDonough WF, Rudnick RL, Dalpé C, Tomascak PB, Chappell BW, Gao S (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68:4167–4178

    Google Scholar 

  • Teng F-Z, Rudnick RL, McDonough WF, Gao S, Tomascak PB, Liu Y (2008) Lithium isotopic composition and concentration of the deep continental crust. Chem Geol 255:47–59

    Google Scholar 

  • Teng F-Z, Rudnick RL, McDonough WF, Wu F-Y (2009) Lithium isotopic systematics of A-type granites and their mafic enclaves: further constraints on the Li isotopic composition of the continental crust. Chem Geol 262:370–379

    Google Scholar 

  • Tomascak PB, Tera F, Helz RT, Walker RJ (1999) The absence of lithium isotope fractionation during basalt differentiation: new measurements by multi-collector sector ICP-MS. Geochim Cosmochim Acta 63:907–910

    Google Scholar 

  • Tomascak PB, Langmuir CH, le Roux P, Shirey SB (2008) Lithium isotopes in global mid-ocean ridge basalts. Geochim Cosmochim Acta 72:1626–1637

    Google Scholar 

  • Tranter M (2003) Geochemical weathering in glacial and proglacial environments. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Pergamon, Oxford, pp 189–205

    Google Scholar 

  • Umeda M, Tuchiya K, Kawamura H, Hasegawa Y, Nanjo Y (2001) Preliminary characterization on Li isotope separation with Li ionic conductors. Fusion Technol 39:654–658

    Google Scholar 

  • US Geological survey (2009) Mineral commodity summaries 2009. U.S. Geological Survey, 195pp

    Google Scholar 

  • Vanneste H, Kelly-Gerreyn BA, Connelly DP, James RRH, Haeckel M, Fisher RE, Heeschen K, Mills RA (2010) Spatial variation in fluid flow and geochemical fluxes across the sediment-seawater interface at the Carlos Ribeiro mud volcano (Gulf of Cadiz). Geochim Cosmochim Acta 75(4):1124–1144

    Google Scholar 

  • Vigier N, Rollion-Bard C, Spezzaferri S, Brunet F (2007) In-situ measurements of Li isotopes in foraminifera. Geochem Geophys Geosyst Q01003. doi:10.1029/2006GC001432

    Google Scholar 

  • Vigier N, Decarreau A, Millot R, Carignan J, Petit S, France-Lanord C (2008) Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle. Geochim Cosmochim Acta 72:780–792

    Google Scholar 

  • Vigier N, Gislason SR, Burton KW, Millot R, Mokadem F (2009) The relationship between riverine lithium isotope composition and silicate weathering rates in Iceland. Earth Planet Sci Lett 287:434–441

    Google Scholar 

  • Vils F, Tonarini S, Kalt A, Seitz H-M (2009) Boron, lithium and strontium isotopes as tracers of seawater–serpentinite interaction at Mid-Atlantic ridge, ODP Leg 209, Earth Planet. Sci Lett 286:414–425

    Google Scholar 

  • Wenger M, Armbruster T (1991) Crystal chemistry of lithium: oxygen coordination and bonding. Eur J Mineral 3:387–399

    Google Scholar 

  • Wheat CG, Mottl MJ (2000) Composition of pore and spring waters from Baby Bare: Global implications of geochemical fluxes from a ridge flank hydrothermal system. Geochim Cosmochim Acta 64:629–642

    Google Scholar 

  • Williams LB, Hervig RL (2005) Lithium and boron isotopes in illite-smectite: the importance of crystal size. Geochim Cosmochim Acta 24:5705–5716

    Google Scholar 

  • Wimpenny J, James RH, Burton KW, Gannoun A, Mokadem F, Gislason SR (2010a) Glacial effects on weathering processes: new insights from the elemental and lithium isotopic composition of West Greenland rivers. Earth Planet Sci Lett 290:427–437

    Google Scholar 

  • Wimpenny J, Gisalason SR, James RH, Gannoun A, Pogge von Strandmann PAE, Burton KW (2010b) The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt. Geochim Cosmochim Acta 74:5259–5279

    Google Scholar 

  • Witherow RA, Lyons WB, Henderson GM (2010) Lithium isotopic composition of the McMurdo Dry Valleys aquatic systems. Chem Geol 275:139–147

    Google Scholar 

  • Wunder B, Meixner A, Romer RL, Heinrich W (2006) Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. Contrib Mineral Petrol 151:112–120

    Google Scholar 

  • Yamaji K, Makita Y, Watanabe H, Sonoda A, Kanoh H, Hirotsu T, Ooi K (2001) Theoretical estimation of lithium reduced partition function ratio for lithium ions in aqueous solution. J Phys Chem A 105:602–613

    Google Scholar 

  • You C-F, Chan L-H (1996) Precise determination of lithium isotopic composition in low concentration natural samples. Geochim Cosmochim Acta 60:909–915

    Google Scholar 

  • You C-F, Chan L-H, Spivack AJ, Gieskes JM (1995) Lithium, boron and their isotopes in sediments and pore waters of Ocean Drilling Program Site 808, Nakai Trough: implications for fluid expulsion in accretionary prisms. Geology 23:37–40

    Google Scholar 

  • You CF, Gieskes JM, Lee T, Yui TF, Chen HW (2004) Geochemistry of mud volcano fluids in the Taiwan accretionary prism. Appl Geochem 19:695–707

    Google Scholar 

  • Zhang L, Chan LH, Gieskes JM (1998) Lithium isotope geochemistry of pore waters from Ocean Drilling Program Sites 918 and 919, Irminger Basin. Geochim Cosmochim Acta 62:2437–2450

    Google Scholar 

Download references

Acknowledgements

We thank the two reviewers, an anonymous reviewer and Rachael James, for their constructive comments on this chapter. We are also grateful for the detailed comments of the Editor, Mark Baskaran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. W. Burton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burton, K.W., Vigier, N. (2012). Lithium Isotopes as Tracers in Marine and Terrestrial Environments. In: Baskaran, M. (eds) Handbook of Environmental Isotope Geochemistry. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10637-8_4

Download citation

Publish with us

Policies and ethics