Skip to main content

Selenium Metabolism in Plants

  • Chapter
  • First Online:

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 17))

Abstract

Selenium (Se) is an essential nutrient for many organisms, but also toxic at higher levels. While certain algae require Se to make selenoproteins, no such requirement has been shown for higher plants. Still, plants readily take up and assimilate Se using sulfur (S) transporters and biochemical pathways, and can also volatilize methylated Se. Some plants can even hyperaccumulate Se to levels around 1% of plant dry weight, in the form of methyl-selenocysteine, probably as a defense mechanism. Plants may be used both to provide dietary Se in areas of Se deficiency, and to clean up Se pollution from seleniferous areas. These applications benefit from better insight into the genetic and biochemical mechanisms that control plant Se tolerance and accumulation. Here we give a review of plant Se metabolism, and present new insights into plant Se tolerance and hyperaccumulation mechanisms. Moreover, we summarize research on the ecological aspects of plant Se accumulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson JW (1993) Selenium interactions in sulfur metabolism. In: De Kok LJ (ed) Sulfur nutrition and assimilation in higher plants – regulatory, agricultural and environmental aspects. SPB Academic, The Netherland, pp 49–60

    Google Scholar 

  • Bañuelos GS, Meek DW (1990) Accumulation of selenium in plants grown on selenium-treated soil. J Environ Qual 19:772–777

    Article  Google Scholar 

  • Bañuelos G, Terry N, LeDuc DL, Pilon-Smits EAH, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium contaminated sediment. Environ Sci Technol 39:1771–1777

    Article  PubMed  Google Scholar 

  • Bañuelos G, LeDuc DL, Pilon-Smits EAH, Tagmount A, Terry N (2007) Transgenic Indian mustard overexpressing selenocysteine lyase, selenocysteine methyltransferase, or methionine methyltransferase exhibit enhanced potential for selenium phytoremediation under field conditions. Environ Sci Technol 41:599–605

    Article  PubMed  Google Scholar 

  • Beath OA, Gilbert CS, Eppson HF (1939a) The use of indicator plants in locating seleniferous areas in Western United States. I. General. Am J Bot 26:257–269

    Article  CAS  Google Scholar 

  • Beath OA, Gilbert CS, Eppson HF (1939b) The use of indicator plants in locating seleniferous areas in Western United States. II. Correlation studies by states. Amer J Bot 26:296–315

    Article  CAS  Google Scholar 

  • Boyd RS, Martens SN (1993) The raison d’etre for metal hyperaccumulation by plants. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, UK, 279–289

    Google Scholar 

  • Broyer TC, Huston RP, Johnson CM (1972) Selenium and nutrition of Astragalus. 1. Effects of selenite or selenate supply on growth and selenium content. Plant Soil 36:635–649

    Article  CAS  Google Scholar 

  • Cartes P, Gianfreda L, Mora ML (2005) Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant Soil 276:359–367

    Article  CAS  Google Scholar 

  • de Souza MP, Terry N (1997) Selenium volatilization by rhizosphere bacteria. Abstr Gen Meet Am Soc Microbiol 97:499

    Google Scholar 

  • de Souza MP, Pilon-Smits EAH, Lytle CM, Hwang S, Tai JC, Honma TSU, Yeh L, Terry N (1998) Rate-limiting steps in selenium volatilization by Brassica juncea. Plant Physiol 117:1487–1494

    Article  PubMed  Google Scholar 

  • de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:565–574

    Article  PubMed  Google Scholar 

  • Djanaguiraman M, Durga Devi D, Shanker AK, Sheeba JA, Bangarusamy U (2005) Selenium – an antioxidative protectant in soybean during selenscence. Plant Soil 272:77–86

    Article  CAS  Google Scholar 

  • Diwadkar-Navsariwala V, Prins GS, Swanson SM, Birch LA, Ray VH, Hedayat S, Lantvit DL, Diamond AM (2006) Selenoprotein deficiency accelerates prostate carcinogenesis in a transgenic model. Proc Natl Acad Sci USA 103:8179–8184

    Article  CAS  PubMed  Google Scholar 

  • Draize JH, Beath OA (1935) Observation on the pathology of “blind staggers” and “alkali disease”. Am Vet Med Assoc J 86:53–763

    Google Scholar 

  • Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B, Wood KV, Harris HH, Pickering IJ, Salt DE (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:1–11

    Article  PubMed  Google Scholar 

  • Feist LJ, Parker DR (2001) Ecotypic variation in selenium accumulation among populations of Stanleya pinnata. New Phytol 149:61–69

    Article  CAS  Google Scholar 

  • Freeman JL, Quinn CF, Marcus MA, Fakra S, Pilon-Smits EAH (2006a) Selenium tolerant diamondback moth disarms hyperaccumulator plant defense. Current Biol 16:2181–2192

    Article  CAS  Google Scholar 

  • Freeman JL, Zhang LH, Marcus MA, Fakra S, McGrath SP, Pilon-Smits EAH (2006b) Spatial imaging, speciation and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142:124–134

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Lindblom SD, Quinn CF, Fakra S, Marcus MA, Pilon-Smits EAH (2007) Selenium accumulation protects plants from herbivory by orthoptera due to toxicity and deterrence. New Phytol 175:490–500

    Article  CAS  PubMed  Google Scholar 

  • Fu L-H, Wang X-F, Eyal Y, She Y-M, Donald LJ, Standing KG, Ben-Hayyim G (2002) A selenoprotein in the plant kingdom: Mass spectrometry confirms that an opal codon (UGA) encodes selenocysteine in Chlamydomonas reinhardtii glutathione peroxidase. J. Biol Chem 277:25983–25991

    Article  CAS  PubMed  Google Scholar 

  • Galeas ML, Zhang LH, Freeman JL, Wegner M, Pilon-Smits EAH (2007) Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related non-accumulators. New Phytol 173:517–525

    Article  CAS  PubMed  Google Scholar 

  • Galeas ML, Klamper EM, Bennett LE, Freeman JL, Kondratieff BC, Pilon-Smits EAH (2008) Selenium hyperaccumulation affects plant arthropod load in the field. New Phytol 177:715–724

    Article  CAS  PubMed  Google Scholar 

  • Garifullina GF, Owen JD, Lindblom S-D, Tufan H, Pilon M, Pilon-Smits EAH (2003) Expression of a mouse selenocysteine lyase in Brassica juncea chloroplasts affects selenium tolerance and accumulation. Physiol Plant 118:538–544

    Article  CAS  Google Scholar 

  • Hansen D, Duda PJ, Zayed A, Terry N (1998) Selenium removal by constructed wetlands: role of biological volatilization. Environ Sci Technol 32:591–597

    Article  CAS  Google Scholar 

  • Hanson BR, Garifullina GF, Lindblom SD, Wangeline A, Ackley A, Kramer K, Norton AP, Lawrence CB, Pilon-Smits EAH (2003) Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection. New Phytol 159:461–469

    Article  CAS  Google Scholar 

  • Hanson BR, Lindblom SD, Loeffler ML, Pilon-Smits EAH (2004) Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity. New Phytol 162:655–662

    Article  CAS  Google Scholar 

  • Harris T (1991) Death in the Marsh. Island Press, Washington, DC

    Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18:309–318

    Article  CAS  PubMed  Google Scholar 

  • Hawkesford MJ (2003) Transporter gene families in plants: the sulphate transporter gene family – redundancy or specialization? Physiol Plant 117:155–163

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (1998) Geochemistry of selenium. J Environ Pathol Toxicol Oncol 17:173–177

    CAS  PubMed  Google Scholar 

  • Kubachka KM, Meija J, LeDuc DL, Terry N, Caruso JA (2007) Environ Sci Technol 41:1863–1869

    Article  CAS  PubMed  Google Scholar 

  • LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, AbdelSamie M, Chiang C-Y, Tagmount A, deSouza MP, Neuhierl B, Bock A, Caruso JA, Terry N (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    Article  CAS  PubMed  Google Scholar 

  • LeDuc DL, AbdelSamie M, Montes-Bayón M, Wu CP, Reisinger SJ, Terry N (2006) Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environ Pollut 144:70–76

    Article  CAS  PubMed  Google Scholar 

  • Leustek T (1996) Molecular genetics of sulfate assimilation in plants. Physiol Plant 97:411–419

    Article  CAS  Google Scholar 

  • Lewis BG, Johnson CM, Delwiche CC (1966) Release of volatile selenium compounds by plants: collection procedures and preliminary observations. J Agric Food Chem 14:638–640

    Article  CAS  Google Scholar 

  • Lyi SM, Heller LI, Rutzke M, Welch RM, Kochian LV, Li L (2005) Molecular and biochemical characterization of the selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in broccoli. Plant Physiol 138:409–420

    Article  CAS  PubMed  Google Scholar 

  • Lyons GH, Genc Y, Soole K, Stangoulis JCR, Liu F, Graham RD (2009) Selenium increases seed production in Brassica. Plant Soil 318:73–80

    Article  CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Yamaya T, Takahashi H (2004) A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation. Plant J 38:779–789

    Article  CAS  PubMed  Google Scholar 

  • Mihara H, Esaki N (2002) Bacterial cysteine desulfurases: their function and mechanisms. Appl Microbiol Biotechnol 60:12–23

    Article  CAS  PubMed  Google Scholar 

  • Munier-Lamy C, Deneux-Mustin S, Mustin C, Merlet D, Berthelin J, Leyval C (2007) Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass. J Environ Radioact 97:148–158

    Article  CAS  PubMed  Google Scholar 

  • Neuhierl B, Böck A (1996) On the mechanism of selenium tolerance in selenium accumulating plants. Purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisulcatus. Eur J Biochem 239:235–238

    Article  CAS  PubMed  Google Scholar 

  • Neuhierl B, Thanbichler M, Lottspeich F, Böck A (1999) A family of S-methylmethionine dependent thiol/selenol methyltransferases. Role in selenium tolerance and evolutionary relation. J Biol Chem 274:5407–5414

    Article  CAS  PubMed  Google Scholar 

  • Novoselov SV, Rao M, Onoshko NV, Zhi H, Kryukov GV, Xiang Y, Weeks DP, Hatfield DL, Gladyshev VN (2002) Selenoproteins and selenocysteine insertion system in the model plant system, Chlamydomonas reinhardtii. EMBO J 21:3681–3693

    Article  CAS  PubMed  Google Scholar 

  • Ohlendorf HM, Hoffman DJ, Salki MK, Aldrich TW (1986) Embryonic mortality and abnormalities of aquatic birds: apparent impacts of selenium from irrigation drain water. Sci Total Environ 52:49–63

    Article  CAS  Google Scholar 

  • Pankiewicz U, Jamroz J, Schodziñski A (2006) Optimization of selenium accumulation in Rhodotorula rubra cells by treatment of culturing medium with pulse electric field. Int Agrophysics 20:147–152

    CAS  Google Scholar 

  • Persans MW, Salt DE (2000) Possible molecular mechanisms involved in nickel, zinc and selenium hyperaccumulation in plants. Biotechnol Genet Eng Rev 17:389–413

    CAS  PubMed  Google Scholar 

  • Pilon M, Owen JD, Garifullina GF, Kurihara T, Mihara H, Esaki N, Pilon-Smits EAH (2003) Enhanced selenium tolerance and accumulation in transgenic Arabidopsis thaliana expressing a mouse selenocysteine lyase. Plant Physiol 131:1250–1257

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119:123–132

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol, in press

    Google Scholar 

  • Quinn CF, Freeman JF, Galeas ML, Klamper EM, Pilon-Smits EAH (2008) Selenium protects plants from prairie dog herbivory – implications for the functional significance and evolution of Se hyperaccumulation. Oecologia 155:267–275

    Article  PubMed  Google Scholar 

  • Rosenfeld I, Beath OA (1964) Selenium, geobotany, biochemistry, toxicity, and nutrition. Academic, New York

    Google Scholar 

  • Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT (1995) Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci USA 92:9373–9377

    Article  CAS  PubMed  Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389

    Article  CAS  PubMed  Google Scholar 

  • Stadtman TC (1990) Selenium biochemistry. Annu Rev Biochem 59:111–127

    Article  CAS  PubMed  Google Scholar 

  • Stadtman TC (1996) Selenocysteine. Annu Rev Biochem 65:83–100

    Article  CAS  PubMed  Google Scholar 

  • Tamaoki M, Freeman JL, Pilon-Smits EAH (2008) Cooperative ethylene and jasmonic acid signaling regulates selenite resistance in Arabidopsis thaliana. Plant Physiol 146:1219–1230

    Article  CAS  PubMed  Google Scholar 

  • Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Ann Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  CAS  Google Scholar 

  • Thompson-Eagle ET, Frankenberger WT Jr, Karlson U (1989) Volatilization of selenium by Alternaria alternata. Appl Environ Microbiol 55:1406–1413

    CAS  PubMed  Google Scholar 

  • Van Hoewyk D, Garifullina GF, Ackley AR, Abdel-Ghany SE, Marcus MA, Fakra S, Ishiyama K, Inoue E, Pilon M, Takahashi H, Pilon-Smits EAH (2005) Overexpression of AtCpNifS enhances selenium tolerance and accumulation in Arabidopsis. Plant Physiol 139:1518–1528

    Article  PubMed  Google Scholar 

  • Van Hoewyk D, Abdel-Ghany SE, Cohu C, Herbert S, Kugrens P, Pilon M, Pilon-Smits EAH (2007) The Arabidopsis cysteine desulfurase CpNifS is essential for maturation of iron-sulfur cluster proteins, photosynthesis, and chloroplast development. Proc Natl Acad Sci USA 104:5686–5691

    Article  CAS  PubMed  Google Scholar 

  • Van Hoewyk D, Takahashi H, Hess A, Tamaoki M, Pilon-Smits EAH (2008) Transcriptomeand biochemical analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant 132:236–253

    PubMed  Google Scholar 

  • Van Huysen T, Abdel-Ghany S, Hale KL, LeDuc D, Terry N, Pilon-Smits EAH (2003) Overexpression of cystathionine-synthase in indian mustard enhances selenium volatilization. Planta 218:71–78

    Article  PubMed  Google Scholar 

  • Van Huysen T, Terry N, Pilon-Smits EAH (2004) Exploring the Selenium phytoremediationpotential of transgenic Brassica juncea overexpressing ATP sulfurylase or cystathionine γ-synthase. Int J Phytoremed 6:111–118

    Article  Google Scholar 

  • Unni E, Koul D, Alfred Yung W-K, Sinha R (2005) Se-methylselenocysteine inhibits phosphatidylinositol 3-kinase activity of mouse mammary epithelial tumor cells in vitro. Breast Cancer Res 7:R699–R707

    Article  CAS  PubMed  Google Scholar 

  • Whanger PD (1989) China, a country with both selenium deficiency and toxicity: some thoughts and impressions. J Nutr 119:1236–1239

    CAS  PubMed  Google Scholar 

  • White PJ, Bowen HC, Marshall B, Broadley MR (2007) Extraordinarily high leaf selenium to sulfur ratios define ‘Se-accumulator’ plants. Ann Bot 100:111–118

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  PubMed  Google Scholar 

  • Wilber CG (1980) Toxicology of selenium: a review. Clin Toxicol 17:171–230

    Article  CAS  PubMed  Google Scholar 

  • Wilson LG, Bandurski RS (1958) Enzymatic reactions involving sulfate, sulfite, selenate and molybdate. J Biol Chem 233:975–981

    CAS  PubMed  Google Scholar 

  • Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K (2002) Two distinct high affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J 29:465–473

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto N, Inoue E, Saito K, Yamaya T, Takahashi H (2003) Phloem-localizing sulfate transporter, Sultr1;3, mediates re-distribution of sulfur from source to sink organs in Arabidopsis. Plant Physiol 131:1511–1517

    Article  CAS  PubMed  Google Scholar 

  • Zayed AM, Terry N (1994) Selenium volatilization in roots and shoots: effects of shoot removal and sulfate level. J Plant Physiol 143:8–14

    CAS  Google Scholar 

  • Zhang L, Byrne PF, Pilon-Smits EAH (2006a) Mapping quantitative trait loci associated with selenate tolerance in Arabidopsis thaliana. New Phytol 170:33–42

    Article  CAS  PubMed  Google Scholar 

  • Zhang L-H, Ackley AR, Pilon-Smits EAH (2006b) Variation in selenium tolerance and accumulation among nineteen Arabidopsis ecotypes. J Plant Physiol 164:327–336

    Article  PubMed  Google Scholar 

  • Zhang L-H, Abdel-Ghany SE, Freeman JL, Ackley AR, Schiavon M, Pilon-Smits EAH (2006c) Investigation of Selenium tolerance mechanisms in Arabidopsis thaliana. Physiol Plant 128:212–223

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The writing of this manuscript was supported by National Science Foundation grant # IOS-0817748 to EAHPS. We thank Wiebke Tapken for creative design of figures. We thank all researchers who contributed to the results described here and apologize to those whose work we could not cover due to space limitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. H. Pilon-Smits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pilon-Smits, E.A.H., Quinn, C.F. (2010). Selenium Metabolism in Plants. In: Hell, R., Mendel, RR. (eds) Cell Biology of Metals and Nutrients. Plant Cell Monographs, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10613-2_10

Download citation

Publish with us

Policies and ethics