Skip to main content

Thermoelectric Power in Ultrathin Films and Quantum Wires Under Large Magnetic Field

  • Chapter
  • First Online:
Thermoelectric Power in Nanostructured Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 137))

  • 1282 Accesses

Abstract

The asymmetry of the wave-vector space of the charge carriers in semiconductors indicates the fact that in ultrathin films (UFs), the restriction of the motion of the carriers in the direction normal to the film (say, the z–direction) may be viewed as carrier confinement in an infinitely deep 1D rectangular potential well, leading to quantization [known as quantum size effect (QSE)] of the wave vector of the carrier along the direction of the potential well, allowing 2D carrier transport parallel to the surface of the film epitomizing new physical features not exhibited in bulk semiconductors [1–4]. The low-dimensional heterostructures based on various materials are widely explored because of the enhancement of carrier mobility [5]. These properties make such structures befitting for applications in quantum well lasers [6], heterojunction FETs [7, 8], high-speed digital networks [9–12], high-frequency microwave circuits [13], optical modulators [14], optical switching systems [15], and other devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.L. Chang, H. Esaki, C.A. Chang, L. Esaki, Phys. Rev. Lett. 38, 1489 (1977)

    Article  Google Scholar 

  2. K. Less, M.S. Shur, J.J. Drunnond, H. Morkoc, IEEE Trans. Electron. Devices ED-30, 07 (1983)

    Google Scholar 

  3. M.J. Kelly, Low Dimensional Semiconductors: Materials, Physics, Technology, Devices (Oxford University Press, Oxford 1995)

    Google Scholar 

  4. C. Weisbuch, B. Vinter, Quantum Semiconductor Structures (Boston Academic Press, Boston, 1991)

    Google Scholar 

  5. N.T. Linch, Festkorperprobleme 23, 27 (1985)

    Google Scholar 

  6. D.R. Sciferes, C. Lindstrom, R.D. Burnham, W. Streifer, T.L. Paoli, Electron. Lett. 19, 170 (1983)

    Google Scholar 

  7. P.M. Solomon, Proc. IEEE. 70, 489 (1982)

    Article  Google Scholar 

  8. T.E. Schlesinger, T. Kuech, Appl. Phys. Lett. 49, 519 (1986)

    Article  Google Scholar 

  9. D. Kasemet, C.S. Hong, N. B. Patel, P.D. Dapkus, Appl. Phys. Lett. 41, 912 (1982)

    Article  Google Scholar 

  10. K. Woodbridge, P. Blood, E.D. Pletcher, P.J. Hulyer, Appl. Phys. Lett. 45, 16 (1984)

    Article  Google Scholar 

  11. S. Tarucha, H.O. Okamoto, Appl. Phys. Lett. 45, 16 (1984)

    Article  Google Scholar 

  12. H. Heiblum, D.C. Thomas, C.M. Knoedler, M.I Nathan, Appl. Phys. Lett. 47, 1105 (1985)

    Google Scholar 

  13. O. Aina, M. Mattingly, F.Y. Juan, P.K. Bhattacharyya, Appl. Phys. Lett. 50, 43 (1987)

    Article  Google Scholar 

  14. I. Suemune, L.A. Coldren, IEEE J. Quant. Electron. 24, 1178 (1988)

    Article  Google Scholar 

  15. D.A.B. Miller, D.S. Chemla, T.C. Damen, J.H. Wood, A.C. Burrus, A.C. Gossard, W. Weigmann, IEEE J. Quant. Electron. 21, 1462 (1985)

    Article  Google Scholar 

  16. P. Harrison, Quantum Wells, Wires and Dots (Wiley, USA, 2002)

    Google Scholar 

  17. B.K. Ridley, Electrons and Phonons in Semiconductors Multilayers (Cambridge University Press, London, 1997)

    Google Scholar 

  18. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Halsted, Les Ulis, Les Editions de Physique, New York, 1988)

    Google Scholar 

  19. V.V. Martin, A.A. Kochelap, M.A. Stroscio, Quantum Heterostructures (Cambridge University Press, London, 1999)

    Google Scholar 

  20. C.S. Lent, D.J. Kirkner, J. Appl. Phys. 67, 6353 (1990)

    Article  Google Scholar 

  21. F. Sols, M. Macucci, U. Ravaioli, K. Hess, Appl. Phys. Lett. 54, 350 (1980)

    Article  Google Scholar 

  22. C.S. Kim, A.M. Satanin, Y.S. Joe, R.M. Cosby, Phys. Rev. B 60, 10962 (1999)

    Article  Google Scholar 

  23. S. Midgley, J.B. Wang, Phys. Rev. B 64, 153304 (2001)

    Article  Google Scholar 

  24. T. Sugaya, J.P. Bird, M. Ogura, Y. Sugiyama, D.K. Ferry, K.Y. Jang, Appl. Phys. Lett. 80, 434 (2002)

    Article  Google Scholar 

  25. B. Kane, G. Facer, A. Dzurak, N. Lumpkin, R. Clark, L. PfeiKer, K. West, Appl. Phys. Lett. 72, 3506 (1998)

    Article  Google Scholar 

  26. C. Dekker, Phys Today 52, 22 (1999)

    Article  Google Scholar 

  27. A. Yacoby, H.L. Stormer, N.S. Wingreen, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Phys. Rev. Lett. 77, 4612 (1996)

    Article  Google Scholar 

  28. Y. Hayamizu, M. Yoshita, S. Watanabe, H.A.L. PfeiKer, K. West, Appl. Phys. Lett. 81, 4937 (2002)

    Article  Google Scholar 

  29. S. Frank, P. Poncharal, Z.L. Wang, W.A. Heer, Science 280, 1744 (1998)

    Article  Google Scholar 

  30. I. Kamiya, I. I. Tanaka, K. Tanaka, F. Yamada, Y. Shinozuka, H. Sakaki, Physica E 13, 131 (2002)

    Article  Google Scholar 

  31. A.K. Geim, P.C. Main, N. LaScala, L. Eaves, T.J. Foster, P.H. Beton, J.W. Sakai, F.W. Sheard, M. Henini, G. Hill et al., Phys. Rev. Lett. 72, 2061 (1994)

    Article  Google Scholar 

  32. K. Schwab, E.A. henriksen, J. M. Worlock, M.L. Roukes, Nature 404, 974 (2000)

    Google Scholar 

  33. L. Kouwenhoven, Nature 403, 374 (2000)

    Article  Google Scholar 

  34. S. Komiyama, O. Astafiev, V. Antonov, H. Hirai, Nature 403, 405 (2000)

    Article  Google Scholar 

  35. A.S. Melinkov, V.M. Vinokur, Nature 415, 60 (2002)

    Article  Google Scholar 

  36. E. Paspalakis, Z. Kis, E. Voutsinas, A.F. Terziz, Phys. Rev. B 69, 155316 (2004)

    Article  Google Scholar 

  37. J.H. Jefferson, M. Fearn, D.L.J. Tipton, T.P. Spiller, Phys. Rev. A 66, 042328 (2002)

    Article  Google Scholar 

  38. J. Appenzeller, C. Schroer, T. Schapers, A. Hart, A. Froster, B. Lengeler, H. Luth, Phys. Rev. B 53, 9959 (1996)

    Article  Google Scholar 

  39. J. Appenzeller, C. Schroer, J. Appl. Phys. 87, 31659 (2002)

    Google Scholar 

  40. P. Debray, O.E. Raichev, M. Rahman, R. Akis, W.C. Mitchel, Appl. Phys. Lett. 74, 768 (1999)

    Article  Google Scholar 

  41. S. Iijima, Nature 354, 56 (1991)

    Article  Google Scholar 

  42. V.N. Popov, Mater. Sci. Eng. R.43, 61 (2004)

    Google Scholar 

  43. J. Sandler, M.S.P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, A.H. Windle, Polymer 40, 5967 (1999)

    Article  Google Scholar 

  44. D. Qian, E.C. Dickey, R. Andrews, T. Rantell, Appl. Phys. Lett. 76, 2868 (2000)

    Article  Google Scholar 

  45. J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K.J. Cho, H.J. Dai, Science 287, 622 (2000)

    Article  Google Scholar 

  46. W.A. Deheer, A. Chatelain, D. Ugarte, Science 270, 1179 (1995)

    Article  Google Scholar 

  47. A.G. Rinzler, J.H. Hafner, P. Nikolaev, L Lou, S.G. Kim, D. Tomanek, P. Nordlander, D.T. Olbert, R.E. Smalley, Science 269, 1550 (1995)

    Google Scholar 

  48. A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Nature 386, 377 (1997)

    Article  Google Scholar 

  49. C. Liu, Y.Y. Fan, M. Liu, H.T. Cong, H.M. Cheng, M.S. Dresselhaus, Science 286, 1127 (1999)

    Article  Google Scholar 

  50. P. Kim, C.M. Lieber, Science 286, 2148 (1999)

    Article  Google Scholar 

  51. D. Srivastava, Nanotechnology 8, 186 (1997)

    Article  Google Scholar 

  52. C. Ke, H.D. Espinosa, Appl. Phys. Lett. 85, 681 (2004)

    Article  Google Scholar 

  53. J. W. Kang, H.J. Hwang, Nanotechnology 15, 1633 (2004)

    Article  Google Scholar 

  54. J. Cumings, A. Zettl, Science 289, 602 (2000)

    Article  Google Scholar 

  55. S.J. Tans, M.H. Devoret, H.J. Dai, A. Thess, R.E. Smalley, LJ. Geerligs, C. Dekker, Nature 386, 474 (1997)

    Google Scholar 

  56. S.J. Tans, A.R.M. Verschueren, C. Dekker, Nature 393, 49 (1998)

    Article  Google Scholar 

  57. P. Avouris, Acc. Chem. Res. 35, 1026 (2002)

    Article  Google Scholar 

  58. P.G. Collins, A. Zettl, H. Bando, A. Thess, R.E. Smalley, Science 278,100 (1997)

    Article  Google Scholar 

  59. S. Saito, Science 278, 77 (1997)

    Article  Google Scholar 

  60. J.C. Charlier, Acc. Chem. Res. 35, 1063 (2002)

    Article  Google Scholar 

  61. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297, 787 (2002)

    Article  Google Scholar 

  62. Z. Yao, H.W.C. Postma, L. Balents, C. Dekker, Nature 402, 273 (1999)

    Article  Google Scholar 

  63. C.W. Zhou, J. Kong, E. Yenilmez, H. Dai, Science 290, 1552 (2000)

    Article  Google Scholar 

  64. S.J. tans, A.R.M. Verschueren, C. Dekker, Nature 393, 49 (1998)

    Google Scholar 

  65. H.W.Ch. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker, Science 293, 76 (2001)

    Article  Google Scholar 

  66. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.L. Cheung, C.M. Lieber, Science 289, 94 (2000)

    Article  Google Scholar 

  67. A. Bacthtold, P. Hadley, T. Nakanish, C. Dekker, Science 294, 1317 (2001)

    Article  Google Scholar 

  68. Q. Zheng, Q. Jiang, Phys. Rev. Lett. 88, 045503 (2002)

    Article  Google Scholar 

  69. Q. Zheng, J.S. Liu, Q. Jiang, Phys. Rev. B 65, 245409 (2002)

    Article  Google Scholar 

  70. Y. Zhao, C.-C. Ma, G.H. Chen, Q. Jiang, Phys. Rev. Lett. 91, 175504 (2003)

    Article  Google Scholar 

  71. S.B. Legoas, V.R. Coluci, S.F. Braga, P.Z. Coura, S.O. Dantus, D.S. Galvao, Phys. Rev. Lett. 90, 055504 (2003)

    Article  Google Scholar 

  72. S.B. Legaos, V.R. Coluci, S.F. Braga, P.Z. Coura, S.O. Dantus, D.S. Galvao, Nanotechnology 15, S184 (2004)

    Article  Google Scholar 

  73. J.W. Kang, H.W. Hwang, J. Appl. Phys. 96, 3900 (2004)

    Article  Google Scholar 

  74. W.Y. Choi, J.W. Kang, H.W. Hwang, Physica E 23, 125 (2004)

    Article  Google Scholar 

  75. H.J. Hwang, K.R. Byun, J.W. Kang, Physica E 23, 208 (2004)

    Article  Google Scholar 

  76. J.W. Kang, H.J. Hwang, Physica E 23, 36 (2004)

    Article  Google Scholar 

  77. J.W. Kang, H.J. Hwang, J. Appl. Phys. 73, 4447 (2004)

    Google Scholar 

  78. J.W. Kang, H.J. Hwang, J. Phys. Soc. Jpn. 73, 1077 (2004)

    Article  Google Scholar 

  79. J.W. Kang, Y.W. Choi, H.J. Hwang, J. Comp. Theor. Nanosci. 1, 199 (2004)

    Article  Google Scholar 

  80. M. Dequesnes, S.V. Rotkin, N.R. Aluru, Nanotechnology 13, 120 (2002)

    Article  Google Scholar 

  81. J.M. Kinaret, T. Nord, S. Viefers, Appl. Phys. Lett. 82, 1287 (2003)

    Article  Google Scholar 

  82. C. Ke, H.D. Espinosa, Appl. Phys. Lett. 85, 681 (2004)

    Article  Google Scholar 

  83. L.M. Jonsson, T. Nord, J.M. Kinaret, S. Viefers, J. Appl. Phys. 96, 629 (2004)

    Article  Google Scholar 

  84. L.M. Jonsson, S. Axelsson, T. Nord, S. Viefers, J.M. Kinaret, Nanotechnology 15, 1497 (2004)

    Article  Google Scholar 

  85. S.W. Lee, D.S. Lee, R.E. Morjan, S.H. Jhang, M. Sveningsson, O.A. Nerushev, Y.W. Park, E.E.B. Campbell, Nano. Lett. 4, 2027 (2004)

    Article  Google Scholar 

  86. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, (Imperial College Press, London, 1998)

    Book  Google Scholar 

  87. R. Heyd, A. Charlier, E. McRae, Phys. Rev. B 55, 6820 (1997)

    Article  Google Scholar 

  88. J.W. Mintmire, C.T. White, Phys. Rev. Lett. 81, 2506 (1998)

    Article  Google Scholar 

  89. K.P. Ghatak, S. Bhattacharya, D. De, Einstein Relation in Compound Semiconductors and Their Nanostructures, Springer Series in Materials Science, vol. 116 (Springer, Germany, 2008)

    Google Scholar 

  90. J.S. Blakemore, Semiconductor Statistics (Dover, USA, 1987)

    Google Scholar 

  91. K.P. Ghatak, S. Bhattacharya, S. Bhowmick, R. Benedictus, S. Chowdhury, J. Appl. Phys. 103, 034303 (2008)

    Article  Google Scholar 

  92. B.R. Nag, Electron Transport in Compound Semiconductors (Springer, Germany, 1980)

    Google Scholar 

  93. R.W. Cunningham, Phys. Rev. 167, 761 (1968)

    Article  Google Scholar 

  94. A.I. Yekimov, A.A. Onushchenko, A.G. Plyukhin, Al.L. Efros, J. Exp. Theor. Phys. 88, 1490 (1985)

    Google Scholar 

  95. B.J. Roman, A.W. Ewald, Phys. Rev. B 5, 3914 (1972)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamakhya Prasad Ghatak .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ghatak, K.P., Bhattacharya, S. (2010). Thermoelectric Power in Ultrathin Films and Quantum Wires Under Large Magnetic Field. In: Thermoelectric Power in Nanostructured Materials. Springer Series in Materials Science, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10571-5_2

Download citation

Publish with us

Policies and ethics