Skip to main content
Book cover

Nanoscience pp 267–313Cite as

Nanocrystalline Materials

  • Chapter
  • First Online:

Abstract

The design of nanocrystalline solids with novel properties different from the chemically identical coarse-grained counterparts was an early and most fruitful contribution to nanoscience [6.1, 6.2]. Nanocrystalline materials are polycrystals with a crystallite size usually in the 10-nm range and atomically disordered crystallite interfaces with a substantial volume fraction. The macroscopic properties are, therefore, dominated by the small crystallite size, giving rise to confinement effects, and the interfacial structure. Crystallites and interfaces may be of the same or of different chemical composition, composites of different materials may be fabricated, dimensionality may play a role, and a plethora of synthesis routes is available (see Chap. 3). The wide field is covered by early reviews [6.3–6.6], monographs [6.7, 6.8], and an encyclopedia (see [6.9]). In this chapter, recent developments in the field of nanocrystalline solids will be reviewed, including aspects such as atomic simulation, structure of interfaces , plasticity , strength , superplasticity , fatigue , composites , ceramics , diffusion, and surface-induced manipulation of the properties of nanomaterials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H. Gleiter, in Deformation of Polycrystals: Mechanisms and Microstructures, eds. by N. Hansen et al. (Risø Nat. Lab., Roskilde, 1981) p. 15

    Google Scholar 

  2. R. Birringer et al., Phys. Lett. A102, 365 (1984)

    ADS  Google Scholar 

  3. R.W. Siegel, H. Hahn, in Current Trends in Physics of Materials, ed. by M. Yusouff (World Scientific Publ., Singapore, 1987) p. 403

    Google Scholar 

  4. H.-E. Schaefer et al., in Physical Research, Vol. 8, ed. K. Henning (Akademie Verlag, Berlin, 1988), p. 580

    Google Scholar 

  5. H. Gleiter, Prog. Mat. Sci. 33, 223 (1989)

    Article  Google Scholar 

  6. H. Gleiter, Acta Mater. 48, 1 (2000)

    Article  Google Scholar 

  7. A.S. Edelstein, R. Cammarata (eds.), Nanomaterials (IOP, Bristol, 1996)

    Google Scholar 

  8. C.C. Koch (ed.), Nanostructured Materials (Noyes Publications, Norwich NY, 2002)

    Google Scholar 

  9. H.S. Nalwa (ed.), Nanoclusters and Nanocrystals (American Scientific Publ., California, 2003)

    Google Scholar 

  10. J. Schiøtz, W. Jacobsen, Science 301, 1357 (2003)

    Article  ADS  Google Scholar 

  11. D. Wolf et al., Acta Mater. 53, 1 (2005)

    Article  Google Scholar 

  12. H.V. Swygenhoven, J.R. Weertman, Mater. Today 9, May 2006, p. 24

    Article  Google Scholar 

  13. H.C. Huang, H. Van Swygenhoven, MRS Bull. 34, 160 (2009)

    Article  Google Scholar 

  14. D.C. Chrzan et al., MRS Bull. 34, 173 (2009)

    Article  Google Scholar 

  15. A.P. Sutton, R.W. Balluffi, Grain boundaries in Crystalline Materials (Oxford Sci., Oxford, 1996)

    Google Scholar 

  16. D. Wolf et al., Phys. Rev. Lett. 77, 2965 (1996)

    Article  ADS  Google Scholar 

  17. N.F. Mott, Proc. Phys. Soc. 60, 391 (1948)

    Article  MATH  ADS  Google Scholar 

  18. J. Löffler, J. Weissmüller, Phys. Rev. B52, 7076 (1995)

    Google Scholar 

  19. H.-E. Schaefer et al., Bericht zum Kompetenznetz Funktionelle Nanostrukturen (Landesstiftung Baden-Württemberg, Germany, 2005), p. 407

    MATH  Google Scholar 

  20. R. Würschum et al., Phys. Rev. B62, 12021 (2000)

    ADS  Google Scholar 

  21. H.-E. Schaefer et al., Mat. Sci. Eng. A286, 24 (2000)

    Google Scholar 

  22. K.W. Urban, Science 321, 506 (2008)

    Article  ADS  Google Scholar 

  23. T. Haubold et al., Phys. Lett. A135, 461 (1989)

    ADS  Google Scholar 

  24. S. Ranganathan et al., Scripta Mater. 44, 1169 (2001)

    Article  Google Scholar 

  25. H.-E. Schaefer, R. Würschum, Phys. Lett. A119, 370 (1987)

    ADS  Google Scholar 

  26. E. Budke et al., Acta Mater. 47, 385 (1999)

    Article  Google Scholar 

  27. P. Keblinski et al., Phil. Mag. Lett. 76, 134 (1997)

    Article  Google Scholar 

  28. Y. Champion et al., Science 300, 310 (2003)

    Article  ADS  Google Scholar 

  29. I.A. Ovid’ko, Rev. Adv. Mater. Sc. 10, 89 (2005)

    Google Scholar 

  30. M. Yu. Gutkin, I.A. Ovid’ko, Plastic Deformation in Nanocrystalline Materials (Springer, Berlin 2004)

    Google Scholar 

  31. J. Weissmüller, J. Markmann, Adv. Eng. Mater. 7, 202 (2005)

    Article  Google Scholar 

  32. X.Z. Liao et al., Appl. Phys. Lett. 83, 632 (2003)

    Article  ADS  Google Scholar 

  33. C.C. Koch, J. Narayan, MRS Symp. Proc., vol. 634, p. B.5.1.1 (2000)

    Article  Google Scholar 

  34. O.L. Warren et al., Mater. Today 10, April 2007, p. 59

    Article  Google Scholar 

  35. A.M. Minor et al., Nature Mater. 5, 697 (2006)

    Article  ADS  Google Scholar 

  36. D. Feichtinger et al., Phys. Rev. B67, 024113 (2003)

    ADS  Google Scholar 

  37. A. Hasnaoui et al., Acta Mater. 52, 2251 (2004)

    Article  Google Scholar 

  38. I. Szlufarska et al., Science 309, 911 (2005)

    Article  ADS  Google Scholar 

  39. I. Szlufarska, Mater. Today 9, 42 (2006)

    Article  Google Scholar 

  40. F. Liao et al., Appl. Phys. Lett. 86, 171913 (2005)

    Article  ADS  Google Scholar 

  41. T. Zhu et al., MRS Bull. 34, 167 (2009)

    Article  Google Scholar 

  42. J.R. Greer, W.D. Nix, Phys. Rev. B73, 245410 (2006)

    Article  ADS  Google Scholar 

  43. S.H. Oh et al., Nat. Mater. 8, 95 (2009)

    Article  ADS  Google Scholar 

  44. D.N. Seidman et al., Acta Mater. 50, 4021 (2002)

    Article  Google Scholar 

  45. T. Zhu et al., Proc. Natl. Acad. Sci. US. 104, 3031 (2007)

    Article  ADS  Google Scholar 

  46. Y.-H. Zhao et al., Adv. Mater. 18, 2280 (2006)

    Article  Google Scholar 

  47. L. Lu et al., Science 304, 422 (2004)

    Article  ADS  Google Scholar 

  48. R.Z. Valiev, Nat. Mater. 3, 511 (2004)

    Article  ADS  Google Scholar 

  49. C. Suryanarayana, Adv. Eng. Mater. 7, 983 (2005)

    Article  Google Scholar 

  50. A. Trafton, MIT TechTalk, March 7, 2007, p. 5

    Google Scholar 

  51. Y.F. Luo et al., J. Mater. Sci. Technol. 25, 211 (2009)

    Google Scholar 

  52. P.M. Derlet et al., MRS Bull. 34, 184 (2009)

    Google Scholar 

  53. L. Lu et al., Science 323, 607 (2009)

    Article  ADS  Google Scholar 

  54. A.K. Mukherjee, Mater. Sci. Eng. A322, 1 (2002)

    Google Scholar 

  55. K.C. Chan et al., Mat. Sci. Technol. 23, 677 (2007)

    Article  ADS  Google Scholar 

  56. R.B. Figueiredo, T.G. Laugdon, Adv. Eng. Mater. 10(1–2), 37 (2008)

    Article  Google Scholar 

  57. S.X. McFadden et al., Nature 398, 684 (1999)

    Article  ADS  Google Scholar 

  58. J.P. Hirth, J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968)

    Google Scholar 

  59. K.A. Padmanabhan, H. Gleiter, Mater. Sci. Eng. A381, 28 (2004)

    Google Scholar 

  60. J. Markmann et al., Scr. Mater. 49, 637 (2003)

    Article  Google Scholar 

  61. B.N. Kim et al., Nature 413, 288 (2001)

    Article  ADS  Google Scholar 

  62. D. Farkas et al., Phys. Rev. Lett. 94, 165502 (2005)

    Article  ADS  Google Scholar 

  63. A. Vinogradov, S. Hashimoto, Adv. Eng. Mater. 5, 351 (2003)

    Article  Google Scholar 

  64. H.W. Höppel et al., Phil. Mag. A82, 1781 (2002)

    ADS  Google Scholar 

  65. X.–W. Li et al., Adv. Eng. Mater. 10 (8), 720 (2008)

    Article  Google Scholar 

  66. E. Thiele et al., Z. Metallkunde 93, 730 (2002)

    Google Scholar 

  67. T. Hanlon et al., Scr. Mater. 49, 675 (2003)

    Article  Google Scholar 

  68. R.A. Meirom et al., Phys. Rev. Lett. 101, 085503 (2008)

    Article  ADS  Google Scholar 

  69. P. Podsiadlo et al., Science 318, 80 (2007)

    Article  ADS  Google Scholar 

  70. J. Eckert et al., Adv. Eng. Mater. 7, 587 (2005)

    Article  Google Scholar 

  71. V.L. Solozhenko, E. Gregoryanz, Mater. Today 8 (11), 44 (2005)

    Article  Google Scholar 

  72. J.S. Moya et al., Adv. Eng. Mater. 9, 898 (2007)

    Article  Google Scholar 

  73. D.V. Szabó et al., Nachr. Forschungsz. Karlsruhe 37(1-2) 64 (2005); D. Vollath, D.V. Szabó, J. Nanopart. Res. 6, 18 (2004)

    Google Scholar 

  74. D. Vollath et al., J. Nanopart. Res. 6, 181 (2004)

    Article  Google Scholar 

  75. S.S. Ray, M. Okamoto, Progr. Polym. Sci. 28, 1539 (2003)

    Article  Google Scholar 

  76. S.C. Tjong, Mat. Sci. Eng. R53, 73 (2006)

    Google Scholar 

  77. S.S. Ray, M. Bousmina, Polymer Nanocomposites and their Applications (American Scientific, Stevenson Ranch, CA, 2006)

    MATH  Google Scholar 

  78. K.I. Winey, R.A. Vaia, MRS Bulletin 32, April 2007, p. 314

    Article  Google Scholar 

  79. D.L. Hunter et al., MRS Bulletin 32, April 2007, p. 323

    Article  Google Scholar 

  80. J. Baur, E. Silverman, MRS Bulletin 32, April 2007, p. 323

    Article  Google Scholar 

  81. R.A. Vaia, H.D. Wagner, Mater. Today, November 2004, p. 32

    Google Scholar 

  82. O.L. Manevitch, C.G. Rutledge, J. Phys. Chem. B108, 1428 (2004)

    Google Scholar 

  83. C. Sealy, Mater. Today 11, April 2008, p. 15

    Google Scholar 

  84. L.J. Bonderer et al., Science 319, 1069 (2008)

    Article  ADS  Google Scholar 

  85. M. Moniruzzaman, K.I. Winey, Macromolecule. 39, 5194 (2006)

    Article  ADS  Google Scholar 

  86. H.D. Wagner, R.A. Vaia, Mater. Today, November 2004, p. 38

    Google Scholar 

  87. T. Ramanathan et al., Nature Nanotechnol. 3, 327 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  88. J.F. Beecher, Nat. Nanotechnol. 2, 466 (2007)

    Article  Google Scholar 

  89. A.B. Morgan, Mater. Matters, Sigma-aldric. 2(1), 20 (2007)

    Google Scholar 

  90. A.B. Morgan, C.A. Wilkie (eds.), Flame Retardant Nanocomposites (Wiley, New York, 2007)

    MATH  Google Scholar 

  91. F. Hussain et al., J. Compos. Mater. 40, 1511 (2006)

    Article  ADS  Google Scholar 

  92. G. Knöner et al., Proc. Natl. Acad. Sci USA 100, 3870 (2003)

    Article  ADS  Google Scholar 

  93. H. Hahn et al., Nachrichten-Forsch. Zentr. Karlsruh. 37(1-2), 12 (2005)

    Google Scholar 

  94. A. Weidenkaff, Adv. Eng. Mater. 6, 709 (2004)

    Article  Google Scholar 

  95. M. Winterer, Nanocrystalline Ceramics – Synthesis and Structure (Springer, Heidelberg, 2002)

    Google Scholar 

  96. R. Würschum et al., Mat. Res. Soc. Symp. Prog. 238, 733 (1992)

    Article  Google Scholar 

  97. L.C. Klein, in Nanomaterials, eds. by A.S. Edelstein, R.C. Cammerata (IOP, Bristol, 1996), p. 147

    Google Scholar 

  98. A. Madubuonu et al., Phys. Stat. Sol. (a. 203, R64 (2006)

    Article  ADS  Google Scholar 

  99. R. Fedyk et al., Opt. Mater. 29, 1252 (2007)

    Article  ADS  Google Scholar 

  100. J. Maier, Sol. State Ionics 131, 13 (2000)

    Article  ADS  Google Scholar 

  101. H. Drings et al., Phys. Stat. Sol. (RRL. 1, R7 (2007)

    Article  Google Scholar 

  102. Th. Döring, Photonik 2/2008, p. 52

    Google Scholar 

  103. R. Würschum et al., Adv. Eng. Mater. 5, 365 (2003)

    Article  Google Scholar 

  104. H. Mehrer, Diffusion in Solids (Springer, Berlin 2007)

    Google Scholar 

  105. H. Gleiter, Phys. Stat. Sol. (b. 172, 41 (1992)

    Article  ADS  Google Scholar 

  106. R. Würschum, H.-E. Schaefer, in Nanomaterials, eds. by A.S. Edelstein, R.C. Cammarata (IOP, Bristol, 1996), p. 277

    Google Scholar 

  107. R. Würschum et al., Nanostructured Materials, ed. by C.C. Koch (Noyes Publications, Norwich NY, 2002), p. 267

    Google Scholar 

  108. P. Heitjans, S. Indris, J. Phys.: Condens. Matter. 15, R1257 (2003)

    Article  ADS  Google Scholar 

  109. A.V. Chadwick, in Diffusion Fundamentals, eds. by J. Kärger et al. (Leipziger Universitätsverlag, Leipzig, 2005), p. 204

    Google Scholar 

  110. I. Kaur et al., Fundamentals in Grain and Interphase Boundary Diffusion (John Wiley, Chichester, 1995)

    Google Scholar 

  111. H. Tanimoto et al., Nanostruct. Mater. 12, 681 (1999)

    Article  Google Scholar 

  112. Q. Ma et al., Acta Metall. Mater. 41, 143 (1993)

    Article  Google Scholar 

  113. M.R. Sørensen et al., Phys. Rev. 62, 3658 (2000)

    Article  Google Scholar 

  114. P. Keblinski et al., Phil. Mag. A79, 2735 (1999)

    ADS  Google Scholar 

  115. R. Würschum et al., Phys. Rev. Lett. 79, 4918 (1997)

    Article  ADS  Google Scholar 

  116. W. Sprengel et al., J. Appl. Phys. 98, 074314 (2005)

    Article  ADS  Google Scholar 

  117. H. Drings et al., Phys. Status Solidi A206, 54 (2009)

    ADS  Google Scholar 

  118. U. Brossmann et al., J. Appl. Phys. 85, 7646 (1999)

    Article  ADS  Google Scholar 

  119. M. Kilo et al., J. Appl. Phys. 94, 7547 (2003)

    Article  ADS  Google Scholar 

  120. A.E. Aliev et al., Science 323, 1575 (2009)

    Article  ADS  Google Scholar 

  121. J. Weissmüller et al., Science 300, 312 (2003)

    Article  ADS  Google Scholar 

  122. K. Sanderson, Nature doi:10.1038/news.2009.178

    Google Scholar 

  123. T.M. Maruyama et al., Nat. Nanotechn. 4, 158 (2009)

    Article  ADS  Google Scholar 

  124. N.A. Spaldin, R. Ramesh, MRS Bull. 33, 1047 (2008)

    Article  Google Scholar 

  125. Y.-H. Chu et al., Nat. Mater. 7, 478 (2008)

    Article  ADS  Google Scholar 

  126. M. Weisheit et al., Science 315, 349 (2007)

    Article  ADS  Google Scholar 

  127. J. Biener et al., Nat. Mater. 8, 47 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Eckhardt Schaefer .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schaefer, HE. (2010). Nanocrystalline Materials . In: Nanoscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10559-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10559-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10558-6

  • Online ISBN: 978-3-642-10559-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics