Skip to main content

Nanochemistry – From Supramolecular Chemistry to Chemistry on the Nanoscale , Catalysis , Renewable Energy , Batteries , and Environmental Protection

  • Chapter
  • First Online:
Book cover Nanoscience
  • 3568 Accesses

Abstract

Chemistry plays an important role in the synthesis of nanostructures (see Chap. 3 and [10.1]). In the present section, the main features of supramolecular chemistry and of inorganic hollow clusters will be outlined with a subsequent discussion of chemical reactions on the nanoscale and catalysis. Furthermore, nanochemistry and nanoscience appear to be of importance for future renewable energy production, battery development, and environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.A. Ozin et al. (eds.) Nanochemistry, 2nd ed. (RSC Publ., Cambridge, 2008)

    Google Scholar 

  2. J.-M. Lehn, Supramolecular Chemistry (VCH, Weinheim, 1995)

    Google Scholar 

  3. J.-M. Lehn, Nova Acta Leopoldina 76, 313 (1997)

    Google Scholar 

  4. J.W. Steed, J.L. Atwood, Supramolecular Chemistry: An Introduction (Wiley, New York, 2000)

    Google Scholar 

  5. K. Ariga, T. Kunitake, Supramolecular Chemistry-Fundamentals and Applications (Springer, Berlin, 2006)

    Google Scholar 

  6. J.F. Stoddart, Nat. Chem. 1, 14 (2009)

    Article  Google Scholar 

  7. A. Müller et al., Nature 426, 59 (2003)

    Article  ADS  Google Scholar 

  8. G. Matthews, Nature 406, 835 (2000)

    Article  Google Scholar 

  9. F. Mal et al., Science 324, 1697 (2009)

    Article  ADS  Google Scholar 

  10. C. Borchard-Tuch, Chem. Unserer Zeit 39, 137 (2005)

    Article  Google Scholar 

  11. J.V. Barth et al., Appl. Phys. A. 76, 645 (2003)

    Article  ADS  Google Scholar 

  12. M.R. Ghadiri et al., Nature 366, 324 (1993)

    Article  ADS  Google Scholar 

  13. E. Sackmann, Macromol. Chem. Phys. 195, 7 (1994)

    Article  Google Scholar 

  14. M.R. Ghadiri et al., Nature 369, 301 (1994)

    Article  ADS  Google Scholar 

  15. P. Kazmaier, N. Chopra, MRS Bull. April 2000, p. 30

    Google Scholar 

  16. S. Fernandez-Lopez et al., Nature 412, 452 (2001)

    Article  ADS  Google Scholar 

  17. A.W. Bosman et al., Mater. Today, April 2004, p. 34

    Google Scholar 

  18. H. Staudinger, Die Hochmolekularen Organischen Verbindungen (Springer, Berlin, 1932)

    Google Scholar 

  19. T.F. A. de Greef, E.W. Meijer, Nature 453, 171 (2008)

    Article  ADS  Google Scholar 

  20. H.B. Goodbrand et al., Patent number US2003/0105185A1, 2003; T.W. Smith et al., Patent number US2003/0079644A1, 2003

    Google Scholar 

  21. S.P. Pappas et al., Patent number WO 02053626A1 (2002)

    Google Scholar 

  22. R.W. Wagner, Das Rheingold, Schott, Mainz (1873)

    Google Scholar 

  23. S.P. Watton et al., Angew. Chem. Int. Edn. 36, 2774 (1997)

    Article  Google Scholar 

  24. A.L. Dearden et al., Angew. Chem. Int. Ed. 40, 152 (2001)

    Article  Google Scholar 

  25. E.K. Brechin et al., Chem. Commun. 1860 (2002)

    Google Scholar 

  26. D.M. Low et al., Chem. Eur. J. 12, 1385 (2006)

    Article  Google Scholar 

  27. G.S. Desirajou, Nature 412, 397 (2000)

    Article  ADS  Google Scholar 

  28. T.B. Liu et al., Nature 426, 59 (2003)

    Article  ADS  Google Scholar 

  29. F. Meier et al., Phys. Rev. B 64, 224411 (2001); Phys. Rev. B 68, 134417 (2003)

    ADS  Google Scholar 

  30. F. Cacialli et al., Mater. Today, April 2004, p. 24

    Google Scholar 

  31. A.M. van de Craats et al., Adv. Mater. 15, 495 (2003)

    Article  Google Scholar 

  32. R.I. Gearba et al., Adv. Mater. 15, 614 (2003)

    Article  Google Scholar 

  33. J.J. van Gorp et al., J. Am. Chem. Soc. 124, 14759 (2002)

    Article  Google Scholar 

  34. H. Engelkamp et al., Science 284, 785 (1999)

    Article  ADS  Google Scholar 

  35. B. Alberts et al., The Molecular Biology of the Cell (Garland Science, New York, (2002)

    Google Scholar 

  36. I. Yildiz et al., Proc. Natl. Acad. Sci. USA 103, 11457 (2006)

    Article  ADS  Google Scholar 

  37. N.C. Seeman, J. Theor. Biol. 99, 237 (1982)

    Article  Google Scholar 

  38. J. Chen, N.C. Seeman, Nature 350, 631 (1991)

    Article  ADS  Google Scholar 

  39. E. Winfree et al., Nature 394, 539 (1998)

    Article  ADS  Google Scholar 

  40. Y. Zhang, N.C. Seeman, J. Am. Chem. Soc. 114, 2656 (1992); ibid. 116, 1661 (1994)

    Article  Google Scholar 

  41. Y. He et al., Nature 452, 198 (2008)

    Article  ADS  Google Scholar 

  42. A. Müller et al., Angew. Chem. 114, 1210 (2002)

    Article  Google Scholar 

  43. F. Karau, W. Schnick, Angew. Chem. Int. Edn. 45, 4505 (2006)

    Article  Google Scholar 

  44. P. Anzenbacher, M.A. Palacios, Nat. Chem. 11, 80 (2009)

    Article  Google Scholar 

  45. J.A. A.W. Elemans, Mater. Today 12, (7–8), 34 (2009)

    Article  Google Scholar 

  46. D.A. Britz et al., Chem. Commun. 37 (2005)

    Google Scholar 

  47. P. Kondratyuk, J.T. Yates, J. Am. Chem. Soc. 129, 8736 (2007)

    Article  Google Scholar 

  48. H. Shiozawa et al., Phys. Rev. Lett. 102, 046804 (2009)

    Article  ADS  Google Scholar 

  49. A.M. Dokter et al., Proc. Natl. Acad. Sci. USA 103, 15355 (2006)

    Article  ADS  Google Scholar 

  50. M.F. Reedijk et al., Phys. Rev. Lett. 90, 066103 (2003)

    Article  ADS  Google Scholar 

  51. S. Balasubramanian et al., Phys. Rev. Lett. 89, 115505 (2002)

    Article  ADS  Google Scholar 

  52. A.-S. Duwez et al., Nat. Nanotech. 1, 122 (2006)

    Article  ADS  Google Scholar 

  53. M. Mavrikakis, Nat. Mater. 5, 847 (2006)

    Article  ADS  Google Scholar 

  54. G. Ertl et al., Eds. Handbook of Heterogeneous Catalysis (Wiley-VCH, Weinheim, ed. 2, 2008)

    Google Scholar 

  55. U. Heiz, U. Landman (eds.) Nanocatalysis (Nanoscience and Technology) (Springer, Berlin, 2007)

    Google Scholar 

  56. F. Besenbacher et al., Nano Today 2, August 2007, p. 30

    Article  Google Scholar 

  57. J. Greeley et al., Nat. Mater. 5, 909 (2006)

    Article  ADS  Google Scholar 

  58. B. Hvolbaek et al., Nano Today, August 2007, p. 14

    Google Scholar 

  59. B. Yoon et al., Chem. Phys. Chem. 8, 157 (2007)

    Article  Google Scholar 

  60. G. Ertl, J. Vac. Sci. Technol. A1, 1247 (1983)

    ADS  Google Scholar 

  61. G. Ertl, H.-J. Freund, Phys. Today, January 1999, p. 32

    Google Scholar 

  62. B.C. Gates et al., MRS Bull. 33, 429 (2008)

    Article  Google Scholar 

  63. J. Frenken, B. Hendriksen, MRS Bull. 32, 1015 (2007)

    Article  Google Scholar 

  64. S. Ferrer et al., MRS Bul. 32, 1010 (2007)

    Article  Google Scholar 

  65. J. Evans et al., MRS Bul. 32, 1038 (2007)

    Article  Google Scholar 

  66. H. Bluhm et al., MRS Bull. 32, 1022 (2007)

    Article  Google Scholar 

  67. S. Giorgio et al., Ultramicroscop. 106, 503 (2006)

    Article  Google Scholar 

  68. M. Haruta et al., Chem. Lett. 16, 405 (1987)

    Article  Google Scholar 

  69. A.A. Herzing et al., Science 321, 1331 (2008)

    Article  ADS  Google Scholar 

  70. H. Falsig et al., Angew. Chem. Int. Ed. 47, 4835 (2008)

    Article  Google Scholar 

  71. D. Matthey et al., Science 315, 1692 (2007)

    Article  ADS  Google Scholar 

  72. S. Vaida et al., Nat. Mater. 8, 213 (2009)

    Article  ADS  Google Scholar 

  73. J.Y. Chen et al., Nano Today 4, 81 (2009)

    Article  ADS  Google Scholar 

  74. Z.M. Peng, H. Yang, Nano Today 4, 143 (2009)

    Article  MathSciNet  Google Scholar 

  75. K. Yamamoto et al., Nat. Chem. 1, 397 (2009)

    Article  Google Scholar 

  76. H.M. Chen et al., J. Phys. Chem. C 112, 7522 (2008)

    Google Scholar 

  77. N. Tian et al., Science 316, 732 (2007)

    Article  ADS  Google Scholar 

  78. S.H. Joo et al., Nat. Mater. 8, 126 (2009)

    Article  ADS  Google Scholar 

  79. M. Schrinner et al., Science 323, 617 (2009)

    Article  ADS  Google Scholar 

  80. I. Lee et al., Nat. Mater. 8, 132 (2009)

    Article  ADS  Google Scholar 

  81. G. Rupprechter, C. Weilach, Nano Today 2, August 2007, p. 20

    Article  Google Scholar 

  82. E. de Smit et al., Nature 456, 222 (2008)

    Article  ADS  Google Scholar 

  83. P. Jena et al., MRS Bull. 33, Sept. 2008, p. 824

    Article  Google Scholar 

  84. R. Jones, Nat. Nanotech. 4, 75 (2009)

    Article  ADS  Google Scholar 

  85. MRS Bull. 33, Dec. 2008, p. 1141

    Google Scholar 

  86. V.S. Arunachalam, E.L. Fleischer, MRS Bull. 33, April 2008, p. 264

    Article  Google Scholar 

  87. N.S. Lewis, D.G. Nocera, Proc. Natl. Acad. Sci. USA 103, 15729 (2006)

    Article  ADS  Google Scholar 

  88. T.M. Tritt et al., MRS Bull. 33, April 2008, p. 366

    Article  Google Scholar 

  89. B. O’Regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  90. D.J. Milliron et al., MRS Bull. 30, January 2005, p. 41

    Article  Google Scholar 

  91. T. López-Luke et al., J. Phys. Chem. C 112, 1282 (2008)

    Article  Google Scholar 

  92. A.C. Mayer et al., Mater. Today 10, Nov. 2007, p. 28

    Article  ADS  Google Scholar 

  93. C. Goh et al., Nano Lett. 5, 1545 (2005)

    Article  ADS  Google Scholar 

  94. M.D. McGehee, MRS Bull. 34, 95 (2009)

    Article  Google Scholar 

  95. D. Ginley et al., MRS Bull. 33, April 2008, p. 355

    Article  Google Scholar 

  96. B.Z. Tian et al., Nature 449, 885 (2007)

    Article  ADS  Google Scholar 

  97. T.J. Seebeck, Abh. K. Akad. Wiss. 265 (Berlin, 1823)

    Google Scholar 

  98. A.M. Rao et al., MRS Bull. 31, Mar, 218 (2006)

    Article  Google Scholar 

  99. M.S. Dresselhaus et al., Adv. Mater. 19, 1043 (2007)

    Article  Google Scholar 

  100. L. Yu-Ming et al., Appl. Phys. Lett. 81, 2403 (2002)

    Article  ADS  Google Scholar 

  101. J. Sommerlatte et al., Phys. J. 6(5), 35 (2007)

    Google Scholar 

  102. B. Poudel et al., Science 320, 634 (2008)

    Article  ADS  Google Scholar 

  103. T. Markussen et al., Phys. Rev. Lett. 103, 055502 (2009)

    Article  ADS  Google Scholar 

  104. M.-L. Kuo et al., Optics Lett. 33, 2527 (2008)

    Article  ADS  Google Scholar 

  105. Y. Qin et al., Nature 451, 809 (2008)

    Article  ADS  Google Scholar 

  106. P. Chen, M. Zhu, Mater. Today 11, December 2008, p. 36

    Article  MathSciNet  Google Scholar 

  107. O. Diat, G. Gebel, Nat. Mater. 7, 13 (2008)

    Article  ADS  Google Scholar 

  108. K. Schmidt-Rohr, Q. Chen, Nat. Mater. 7, 75 (2008)

    Article  ADS  Google Scholar 

  109. P. Gibot et al., Nat. Mater. 7, 741 (2008)

    Article  ADS  Google Scholar 

  110. M.M. Doeff et al., MRS Bull. 32, October 2007, p. 755

    Article  Google Scholar 

  111. V.L. Pushparaj et al., Proc. Natl. Acad. Sci. USA 104, 13574 (2007)

    Article  ADS  Google Scholar 

  112. B. Scrosati, Nat. Nanotech. 2, 598 (2007)

    Article  ADS  Google Scholar 

  113. R. Kötz, M. Carlen, Electrochim. Act. 45, 2483 (2000)

    Article  Google Scholar 

  114. M.S. Wittingham, MRS Bul. 33, April 2008, p. 411

    Article  Google Scholar 

  115. Z.W. Zhao et al., J. Mater. Sci. Techn. 24, 657 (2008)

    Google Scholar 

  116. S.-Y. Chung et al., Nat. Mater. 1, 123 (2002)

    Article  ADS  Google Scholar 

  117. B. Kang, G. Ceder, Nature 458, 190 (2009)

    Article  ADS  Google Scholar 

  118. J. Agbenyega, Mater. Today 12, May 2009, p. 10

    Google Scholar 

  119. M. Kaempgen et al., Nano Lett. 9, 1872 (2009)

    Article  ADS  Google Scholar 

  120. J. Yuan et al., Nat. Nanotech. 3, 322 (2008)

    Article  ADS  Google Scholar 

  121. J. Lahann, Nat. Nanotech. 3, 320 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Eckhardt Schaefer .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schaefer, HE. (2010). Nanochemistry – From Supramolecular Chemistry to Chemistry on the Nanoscale , Catalysis , Renewable Energy , Batteries , and Environmental Protection . In: Nanoscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10559-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10559-3_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10558-6

  • Online ISBN: 978-3-642-10559-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics