Skip to main content

Phase Transformations

  • Chapter
  • First Online:
  • 9506 Accesses

Abstract

The manipulation of the microstructure of materials belongs to the heart of the realm of materials science. Often, but not always, non-equilibrium structures/states are produced purposely. The goal of the invoked microstructural changes is to bring about favourable values for the material properties of interest in the application of the material concerned. Mechanical treatments in combination with heat treatments, such as cold rolling followed by annealing to induce recrystallization, provide one example, which is discussed in Chap. 10. Very often the microstructure is changed by deliberately generated phase transformations, which are the focal point of interest in this chapter. A classical example involves (see Fig. 9.1 pertaining to a binary system, and see also Chap. 7)

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General

  • Christian JW (1975) The theory of transformations in metals and alloys, Part I, Equilibrium and general kinetic theory, 2nd edn. Pergamon Press, Oxford

    Google Scholar 

  • Kostorz G (ed) (2001) Phase transformations in materials. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  • Krauss G (1995) Steels, heat treatment and processing principles. ASM, Materials Park, OH

    Google Scholar 

  • Liu F, Sommer F, Bos C, Mittemeijer EJ (2007) Analysis of solid state phase transformation kinetics: models and recipes. Int Mater Rev 52:193–212

    Article  CAS  Google Scholar 

  • Manna I, Pabi SK, Gust W (2001) Discontinuous reactions in solids. Int Mater Rev 46:53–91

    Article  CAS  Google Scholar 

  • Mittemeijer EJ (1992) Analysis of the kinetics of phase transformations. J Mater Sci 27:3977–3987

    Article  CAS  Google Scholar 

  • Nishiyama Z (1978) Martensitic transformation. Academic Press, New York

    Google Scholar 

  • Porter DA, Easterling KE (1992) Phase transformations in metals and alloys, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Wayman CM (1964) Introduction to the crystallography of martensitic transformations. MacMillan, New York

    Google Scholar 

  • Williams DB, Butler EP (1981) Grain boundary discontinuous precipitation reactions. Int Mater Rev 26:153–183

    CAS  Google Scholar 

Specific

  • Avrami M (1939) Kinetics of phase change. I. General theory. J Chem Phys 7:1103–1112

    CAS  Google Scholar 

  • Avrami M (1940) Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224

    Article  CAS  Google Scholar 

  • Avrami M (1941) Granulation, phase change, and microstructure. Kinetics of phase change. III. J Chem Phys 9:177–184

    Article  CAS  Google Scholar 

  • Bhadeshia HKDH (2004) Carbon–carbon interactions in iron. J Mater Sci 39:3949–3955

    Article  CAS  Google Scholar 

  • Biglari MH, Brakman CM, Mittemeijer EJ, van der Zwaag S (1995) The kinetics of the internal nitriding of Fe-2 at.% Al Alloy. Metallurgical Mater Trans A 26A:765–776

    Article  CAS  Google Scholar 

  • Bos C, Sommer F, Mittemeijer EJ (2005) An atomistic analysis of the interface mobility in a massive transformation. Acta Materialia 53:5333–5341

    Article  CAS  Google Scholar 

  • Cahn JW (1959) The kinetics of cellular segregation reactions. Acta Metallurgica 7:18–28

    Article  CAS  Google Scholar 

  • van Genderen MJ, Böttger AJ, Cernik RJ, Mittemeijer EJ (1993) Early stages of decomposition in iron-carbon and iron-nitrogen martensites: diffraction analysis using synchrotron radiation. Metallurgical Trans A 24A:1965–1973

    Article  Google Scholar 

  • van Genderen MJ, Böttger A, Mittemeijer EJ (1997) Formation of \(\alpha^{\prime\prime}\) iron nitride in FeN martensite: nitrogen vacancies, iron-atom displacements, and Misfit-Strain energy. Metallurgical Mater Trans A 28A:63–77

    Article  Google Scholar 

  • van Gent A, van Doorn FC, Mittemeijer EJ (1985) Crystallography and tempering behavior of iron-nitrogen martensite. Metallurgical Trans A 16A:1371–1384

    Article  Google Scholar 

  • Guinier A (1938) Structure of age-hardened aluminium-copper alloys. Nature 142:569–570

    Article  CAS  Google Scholar 

  • Johnson WA, Mehl RF (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Inst Mining Metallurgical Eng 135:416–458

    Google Scholar 

  • Kempen ATW, Sommer F, Mittemeijer EJ (2002) The kinetics of the Austenite-Ferrite phase transformation of Fe-Mn: differential thermal analysis during cooling. Acta Materialia 50:3545–3555

    Article  CAS  Google Scholar 

  • Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  • Kolmogorov AN (1937) On the statistics of crystallization in metals. Izv. Akad.Nauk SSSR Ser. Mat. 3:355–359 (in Russian with abstract in German)

    Google Scholar 

  • Krauss G, Marder AR (1971) The morphology of martensite in iron alloys. Metallurgical Trans 2:2343–2357

    Article  CAS  Google Scholar 

  • Liu F, Sommer F, Mittemeijer EJ (2004a) Parameter determination of an analytical model for phase transformation kinetics: application to crystallization of amorphous Mg-Ni alloys. J Mater Res 19:2586–2596

    Article  CAS  Google Scholar 

  • Liu F, Sommer F, Mittemeijer EJ (2004b) Determination of nucleation and growth mechanisms of the crystallization of amorphous alloys; application to calorimetric data. Acta Materialia 52:3207–3216

    Article  CAS  Google Scholar 

  • Liu YC, Sommer F, Mittemeijer EJ (2004c) Abnormal Austenite-Ferrite transformation behaviour of pure iron. Philo Mag 84:1853–1876

    Article  CAS  Google Scholar 

  • Liu YC, Sommer F, Mittemeijer EJ (2006) The Austenite-Ferrite transformation of Ultralow-Carbon Fe-C alloy; transition from diffusion- to interface-controlled growth. Acta Materialia 54:3383–3393

    Article  CAS  Google Scholar 

  • Liu YC, Sommer F, Mittemeijer EJ (2008) Critical temperature for massive transformation in ultra-low-carbon Fe-C alloys. Int J Mater Res 99:925–932

    CAS  Google Scholar 

  • Lopez GA, Zieba P, Gust W, Mittemeijer EJ (2003) Discontinuous precipitation in a Cu-4.5 at.%In alloy. Mater Sci Technol 19:1539–1545

    Article  CAS  Google Scholar 

  • Löpez GA, Mittemeijer EJ, Straumal BB (2004) Grain boundary wetting by a solid phase; microstructural development in a Zn-5 wt% Al alloy. Acta Materialia 52:4537–4545

    Article  Google Scholar 

  • Liu C, Brakman CM, Korevaar BM, Mittemeijer EJ (1988) Tempering of iron-carbon martensite; dilatometric and calorimetric analysis. Metallurgical Trans A 19A:2415–2426

    Google Scholar 

  • Liu C, Mittemeijer EJ (1990) Tempering of iron-nitrogen martensite; dilatometric and calorimetric analysis. Metallurgical Trans A 19A:13–26

    Google Scholar 

  • Liu C, Böttger A, de Keijser ThH, Mittemeijer EJ (1990) Lattice parameters of iron-carbon and iron-nitrogen martensites and austenites. Scripta Metallurgica et Materialia 24:509–514

    Article  Google Scholar 

  • Marder AR, Krauss G (1969) The formation of low-carbon martensite in Fe-C alloys. Trans ASM 62:957–964

    CAS  Google Scholar 

  • Mittemeijer EJ, Slycke JT (1996) Chemical potentials and activities of nitrogen and carbon imposed by gaseous nitriding and carburising atmospheres. Surf Eng 12:152–162

    CAS  Google Scholar 

  • Nitsche H, Sommer F, Mittemeijer EJ (2005) The Al nano-crystallization process in amorphous \(\mathrm{Al}_{85}\mathrm{Ni}_{8}\mathrm{Y}_{5}\mathrm{Co}_{2}\). J Non-Crystalline Solids 351:3760–3771

    Article  CAS  Google Scholar 

  • Parisi A, Plapp M (2008) Stability of lamellar eutectic growth. Acta Materialia 56:1348–1357

    Article  CAS  Google Scholar 

  • Pond RC, Ma X, Hirth JP (2008) Geometrical and physical models of martensitic transformations in ferrous alloys. J Mater Sci 43:3881–3888

    Article  CAS  Google Scholar 

  • Preston GD (1938) The diffraction of X-rays by age-hardening aluminium copper alloys. Proc R Soc Lond A 167:526–538

    Article  CAS  Google Scholar 

  • Puls MP, Kirkaldy JS (1972) The pearlite reaction. Metallurgical Trans 3:2777–2796

    Article  CAS  Google Scholar 

  • Schacherl RE, Graat PCJ, Mittemeijer EJ (2002) Gaseous nitriding of iron-chromium alloys. Zeitschrift für Metallkunde 93:468–477

    CAS  Google Scholar 

  • Sietsma J, van der Zwaag S (2004) A concise model for mixed-mode phase transformations in the solid state. Acta Materialia 52:4143–4152

    Article  CAS  Google Scholar 

  • Straumal BB, Lopez GA, Mittemeijer EJ, Gust W, Zhilyaev AP (2003) Grain boundary phase transitions in the Al-Mg system and their influence on high-strain rate superplasticity. Defect Diffusion Forum 216–217:307–312

    Article  Google Scholar 

  • Thomas G (1978) Retained austenite and tempered martensite embrittlement. Metallurigical Trans A 9A:439–450

    Article  CAS  Google Scholar 

  • Wayman CM, Shimizu K (1972) The shape memory (“Marmem”) effect in alloys. Metal Sci J 6:175–183

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Mittemeijer .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mittemeijer, E.J. (2010). Phase Transformations. In: Fundamentals of Materials Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10500-5_9

Download citation

Publish with us

Policies and ethics