Skip to main content

Magnesium Inhibition Controls Spherical Carbonate Precipitation in Ultrabasic Springwater (Cedars, California) and Culture Experiments

  • Chapter
  • First Online:
Advances in Stromatolite Geobiology

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 131))

Abstract

The formation of spherical mineral aggregates is commonly observed in nature and well-known from carbonates formed in marine and hypersaline environments and based on their internal structure called ooids, pellets, pisolites, etc. (e.g. Bathurst 1967; Donahue 1969; Davies et al. 1978; Tucker 1984; Tucker and Wright 1990)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arvidson RS, Collier M, Davis KJ, Vinson MD, Amonette JE, Lüttge A (2005) Magnesium inhibition of calcite dissolution kinetics. Geochimica et Cosmochimica Acta 70:583–594

    Article  Google Scholar 

  • Baker P, Kastner M (1981) Constraints on the formation of sedimentary dolomite. Science 213:214–216

    Article  Google Scholar 

  • Barnes I, O’Neil JR (1969) The relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinization, Western United States. The Geological Society of America Bulletin 80:1947–1960

    Article  Google Scholar 

  • Barnes I, LaMarche VC, Himmelberg GR (1967) Geochemical evidence of present-day serpentinization. Science 56:830–832

    Article  Google Scholar 

  • Bathurst RGC (1967) Oolitic films on low energy carbonate sand grains, Bimini Lagoon, Bahamas. Marine Geology 5:89–109

    Article  Google Scholar 

  • Berner RA (1975) The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochimica et Cosmochimica Acta 39:489–504

    Article  Google Scholar 

  • Bontognali TRR, Vasconcelos C, Warthmann RJ, Dupraz C, Bernasconi SM, McKenzie JA (2008) Microbes produce nanobacteria-like structures, avoiding cell entombment. Geology 36:663-666

    Article  Google Scholar 

  • Bosak T, Newman DK (2005) Microbial kinetic controls on calcite morphology in supersaturated solutions. Journal of Sedimentary Research 75:190–199

    Article  Google Scholar 

  • Braissant O, Cailleau G, Dupraz C, Verrecchia EP (2003) Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids. Journal of Sedimentary Research 73:485–490

    Article  Google Scholar 

  • Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5:401–411

    Article  Google Scholar 

  • Burns SJ, McKenzie JA, Vasconcelos C (2000) Dolomite formation and biogeochemical cycles in the Phanerozoic. Sedimentology 47:49–61

    Article  Google Scholar 

  • Cölfen H, Qi L (2001) A systematic examination of the morphogenesis of calcium carbonate in the presence of a double-hydrophilic block copolymer. Chemistry – A European Journal 1:106–116

    Article  Google Scholar 

  • Davies PJ, Bubela B, Ferguson J (1978) The formation of ooids. Sedimentology 25:703–729

    Article  Google Scholar 

  • Donahue J (1969) Genesis of oolite and pisolite grains: an energy index. Journal of Sedimentary Petrology 39:1399–1411

    Google Scholar 

  • Dupraz C, Visscher PT, Baumgartner LK, Reid RP (2004) Microbe–mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51:745–765

    Article  Google Scholar 

  • Folk RL (1999) Nannobacteria and the precipitation of carbonate in unusual environments. Sedimentary Geology 126:47–55

    Article  Google Scholar 

  • Folk RL, Lynch FL (2001) Organic matter, putative nannobacteria and the formation of ooids and hardgrounds. Sedimentology 48:215–299

    Article  Google Scholar 

  • Früh-Green GL, Kelley DS, Bernasconi SM, Karson JA, Ludwig KA, Butterfield DA, Boschi C, Proskurowski G (2003) 30,000 years of hydrothermal activity at the Lost City Vent Field. Science 301:495–498

    Article  Google Scholar 

  • Früh-Green GL, Delacour A, Boschi C, Bernasconi SM, Butterfield DA, Kelley DS, Proskurowski G (2007) Building Lost City: serpentinization, mass transfer and life in a peridotite-hosted hydrothermal system. Geochimica et Cosmochimica Acta 71/15(Suppl. 1):A298

    Google Scholar 

  • Gerdes G, Dunajtschik-Piewak K, Riege H, Taher AG, Krumbein WE, Reineck H-E (1994) Structural diversity of biogenic carbonate particles in microbial mats. Sedimentology 41:1273–1294

    Article  Google Scholar 

  • Given RK, Wilkinson BH (1985) Kinetic control of morphology, composition, and mineralogy of abiotic sedimentary carbonates. Journal of Sedimentary Petrology 55:109–119

    Google Scholar 

  • Gonzáles-Muñoz MT, Ben Chekroun K, Ben Aboud A, Arias J, Rodriguez-Gallego M (2000) Bacterially induced Mg-calcite formation: role of Mg2+ in development of crystal morphology. Journal of Sedimentary Research 70:559–564

    Article  Google Scholar 

  • Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences 27:313–358

    Article  Google Scholar 

  • Hardie LA (1996) Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporates over the past 600 m.y. Geology 24:279–283

    Article  Google Scholar 

  • Hardie LA (2003) Secular variation in Precambrian seawater chemistry and the timing of Precambrian aragonite seas and calcite seas. Geology 31:785–788

    Article  Google Scholar 

  • Kelley DS, Karson JA, Blackman DK, Früh-Green GL, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebon GT, Rivizzigno P, AT3-60 Shipboard Party (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature 412:145–149

    Article  Google Scholar 

  • Kelley DS, Karson JA, Früh-Green GL, Yoerger DR, Shank TM, Butterfield DA, Hayes JM, Schrenk MO, Olson EJ, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig K, Glickson D, Buckman K, Bradley AS, Brazelton WJ, Roe K, Elend MJ, Delacour A, Bernasconi SM, Lilley MD, Baross JA, Summons RE, Sylva SP (2005) A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307:1428–1434

    Article  Google Scholar 

  • Kralj D, Kontrec J, Brecevic L, Falini G, Nöthig-Laslo V (2004) Effect of inorganic anions on the morphology and structure of magnesium calcite. Chemistry – A European Journal 10:1647–1656

    Article  Google Scholar 

  • Ludwig KA, Kelley DS, Butterfield DA, Nelson BK, Früh-Green G (2006) Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field. Geochimica et Cosmochimica Acta 70:3625–3645

    Article  Google Scholar 

  • Meldrum FC, Hyde ST (2001) Morphological influence of magnesium and organic additives on the precipitation of calcite. Journal of Crystal Growth 231:544–558

    Article  Google Scholar 

  • Mitterer RM (1972) Biogeochemistry of aragonitic muds and oolites. Geochimica et Cosmochimica Acta 36:1407–1422

    Article  Google Scholar 

  • Morse JW, Wang Q, Tsio MY (1997) Influences of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater. Geology 25:85–87

    Article  Google Scholar 

  • Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321

    Article  Google Scholar 

  • O’Neil JR, Barnes I (1971) C13 and O18 compositions in some fresh-water carbonates associated with ultramafic rocks and serpentinites: western United States. Geochimica et Cosmochimica Acta 35: 687–697

    Article  Google Scholar 

  • Platt JP (1986) Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. The Geological Society of America Bulletin 97:1037–1053

    Article  Google Scholar 

  • Plee K, Ariztegui D, Martini R, Davaud E (2008) Unravelling the microbial role in ooid formation-results of an in situ experiment in modern freshwater Lake Geneva in Switzerland. Geobiology DOI: 10.1111/j.1472-4669.2007.00140.x

    Google Scholar 

  • Riding R, Liang L (2005) Geobiology of microbial carbonates: metazoans and seawater saturation state influence on secular trends during the Phanerozoic. Palaegeography, Palaeoclimatology, Palaeoecology 219:101–115

    Article  Google Scholar 

  • Ries JB, Anderson MA, Hill RT (2008) Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: a potential proxy for calcite-aragonite seas in Precambrian time. Geobiology 6:106–119

    Article  Google Scholar 

  • Rivadeneyra MA, Martín-Algarra A, Sánchez-Navas A, Martín-Ramos D (2006) Carbonate and phosphate precipitation by Chromohalobactern marismortui. Geomicrobiology Journal 23:89–101

    Article  Google Scholar 

  • Sánchez-Román M, Vasconcelos C, Schmid T, Dittrich M, McKenzie JA, Zenobi R, Rivadeneyra MA (2008) Aerobic microbial dolomite at the nanometer scale: implications for the geologic record. Geology 36:879–882

    Article  Google Scholar 

  • Sandberg PA (1983) An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature 305:19–22

    Article  Google Scholar 

  • Sleep NH, Meibom A, Fridriksson Th, Coleman RG, Bird DK (2004) H2-rich fluids from serpentinization: geochemical and biotic implications. Proceedings of the National Academy of Sciences of the United States of America 101:12818–12823

    Article  Google Scholar 

  • Stanley SM, Hardie LA (1998) Secular oscillations in the carbonate mineralogy if reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology 144:3–9

    Article  Google Scholar 

  • Suess E, Fütterer D (1972) Aragonitic ooids: experimental precipitation from seawater in the presence of humic acid. Sedimentology 19:129–139

    Article  Google Scholar 

  • Tucker ME (1984) Calcitic, aragonitic, and mixed calcitic-aragonitic ooids from the mid-Proterozoic Belt Supergroup, Montana. Sedimentology 31:627–644

    Article  Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Science, Oxford

    Book  Google Scholar 

  • Van Lith Y, Warthmann R, Vasconcelos C, McKenzie JA (2003) Microbial fossilization in carbonate sediments: a result of the bacterial surface involvement in dolomite precipitation. Sedimentology 50:237–245

    Article  Google Scholar 

  • Vasconcelos C, McKenzie JA, Bernasconi S, Grujic D, Tien AJ (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 377:220–222.

    Article  Google Scholar 

  • Verrecchia E, Freytet P, Verrecchia KE, Dumont JL (1995) Spherulites in calcrete laminar crusts: biogenic CaCO3 precipitation as a major contributor to crust formation. Journal of Sedimentary Research A65:690–700

    Google Scholar 

  • Von Damm KL (2001) Lost city found. Nature 412:127–128

    Article  Google Scholar 

  • Warthmann R, Van Lith Y, Vasconcelos C, McKenzie JA, Karpoff AM (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28:1091–1094

    Article  Google Scholar 

  • Wilkinson BH, Given KR (1986) Secular variation in abiotic marine carbonates: constraints on Phanerozoic atmospheric carbon dioxide contents and oceanic Mg/Ca ratios. Journal of Geology 94:321–333

    Article  Google Scholar 

  • Wilkinson BH, Owen RM, Carrol AR (1985) Submarine hydrothermal weathering, global eustasy, and carbonate polymorphism in Phanerozoic marine oolites. Journal of Sedimentary Petrology 55:171–183

    Google Scholar 

  • Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of Methane by Bacterial Extracts. The Journal of Biological Chemistry 238:2882–2886

    Google Scholar 

Download references

Acknowledgements

We thank Monika Segl (University of Bremen) and Gaute Lavik (MPI, Bremen) for isotope analysis, as well as Peter Schiffman (UC Davis) for allowing us to present his unpublished isotope data. Gail Arnold (MPI, Bremen) and Carolina Reyes (UC Santa Cruz) provided useful comments and improved the clarity of the manuscript. Discussions with Gijs Kuenen, Ana Obraztsova, John Platt, and Rolf Warthmann contributed significantly to the study. We thank Damon Rogers for giving us the opportunity to visit the Cedars Springs and for allowing us to use his camping facility. This study was sponsored by the Agouron Institute and the Swiss National Science Foundation (SNF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Meister .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Meister, P., Johnson, O., Corsetti, F., Nealson, K.H. (2011). Magnesium Inhibition Controls Spherical Carbonate Precipitation in Ultrabasic Springwater (Cedars, California) and Culture Experiments. In: Advances in Stromatolite Geobiology. Lecture Notes in Earth Sciences, vol 131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10415-2_6

Download citation

Publish with us

Policies and ethics