Skip to main content

Using a 3-D radiative transfer Monte–Carlo model to assess radiative effects on polarized reflectances above cloud scenes

  • Chapter
  • First Online:
Light Scattering Reviews 5

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

  • 1223 Accesses

Abstract

In the near future, more and more spaceborne or airborne instruments will be able to measure polarized reflectance issued from the atmosphere. To give some examples, currently, the POLarization and Directionality of the Earth’s Reflectance instrument POLDER3/ PARASOL, which is the successor of POLDER2/ADEOS2 and POLDER/ADEOS (Deschamps et al., 1994) measures, since 2005, the polarized signal in the visible spectral range with up to 14 viewing directions. The airborne version of this instrument, called OSIRIS (observing system including polarization in the solar infrared spectrum (Auriol et al., 2008)), is nowadays extended to the near-infrared range and will maybe, in the future, generate a spaceborne version. The Aerosol Polarimetry Sensor (APS), the spaceborne version of the Research Scanning Radiometer (RSP) will be able to measure reflected total and polarized light in visible, near infrared, and short-wave infrared and should be launched in the framework of the Glory mission in 2010 (Mishchenko et al., 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auriol, F., Leon, J.-F., Balois, J.-Y., Verwaerde, C., Françcois, P., Riedi, J., Parol, F., Waquet, F., Tanré, D., and Goloub, P. (2008). Multidirectional visible and shortwave infrared polarimeter for atmospheric aerosol and cloud observation: OSIRIS (Observing System Including PolaRisation in the Solar Infrared Spectrum). In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 7149. Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference.

    Google Scholar 

  • Avery, L. W. and House, L. L. (1969). The monte carlo technique applied to radiative transfer. Journal of Quantitative Spectroscopie and Radiative Transfer, 9:1579–1591.

    Article  Google Scholar 

  • Bréon, F.-M. and Doutriaux-Boucher, M. (2005). A comparison of cloud droplet radii measured from space. IEEE Transactions on Geoscience and Remote Sensing, 43:1796–1805.

    Article  Google Scholar 

  • Bréon, F.-M. and Goloub, P. (1998). Cloud droplet effective radius from spaceborne polarization measurements. Geophysical Research Letters, 25:1879–1882.

    Article  Google Scholar 

  • C-Labonnote, L., Brogniez, G., Buriez, J.-C., Doutriaux-Boucher, M., Gayet, J.-F., and Macke, A. (2001). Polarized light scattering by inhomogeneous hexagonal monocrystals. Validation with ADEOS-POLDER measurements. Journal of Geophysical Research (Atmospheres), 106:12139–12153.

    Google Scholar 

  • Cahalan, R. F., Ridgway, W., Wiscombe, W. J., Bell, T. L., and Snider, J. B. (1994). The albedo of fractal stratocumulus clouds. Journal of Atmospheric Sciences, 51:2434–2460.

    Article  Google Scholar 

  • Cashwell, E. D. and Everett, C. J. (1959). A Practical Manual on the Monte-Carlo Method for Random Walk Problems. Pergamon, Oxford.

    Google Scholar 

  • Chandrasekar, S. (1960). Radiative Transfer. Dover, New York.

    Google Scholar 

  • Chepfer, H., Goloub, P., Riedi, J., De Haan, J. F., Hovenier, J. W., and Flamant, P. H. (2001). Ice crystal shapes in cirrus clouds derived from POLDER/ADEOS-1. Journal of Geophysical Research (Atmospheres), 106:7955–7966.

    Article  Google Scholar 

  • Cornet, C. and Davies, R. (2008). Use of MISR measurements to study the radiative transfer of an isolated convective cloud: Implications for cloud optical thickness retrieval. Journal of Geophysical Research (Atmospheres), 113:D04202.

    Google Scholar 

  • Cornet, C., C-Labonnote, L., and Szczap, F. (2010). Three-dimensional polarized Monte Carlo atmospheric radiative transfer model (3DMCPOL): 3D effects on polarized visible reflectances of a cirrus cloud. Journal of Quantitative Spectroscopie and Radiative Transfer, 111, doi: 10.1016/j.jqsrt.2009.06.013.

    CAS  Google Scholar 

  • de Haan, J. F., Bosma, P. B., and Hovenier, J. W. (1987). The adding method for multiple scattering calculations of polarized light. Astronomy and Astrophysics, 183:371–391.

    Google Scholar 

  • Deschamps, P.-Y., Breon, F.-M., Leroy, M., Podaire, A., Bricaud, A., Buriez, J.-C., and Seze, G. (1994). The POLDER mission: instrument characteristics and scientific objectives. IEEE Transactions on Geoscience and Remote Sensing, 32:598–615.

    Article  Google Scholar 

  • Emde, C., Buras, R., Mayer, B., and Blumthaler, M. (2009). The impact of aerosols on polarized sky radiance: Model development, validation, and applications. Atmospheric Chemistry and Physics, submitted.

    Google Scholar 

  • Evans, K. F. (1998). The spherical harmonics discrete ordinate method for threedimensional atmospheric radiative transfer. Journal of Atmospheric Sciences, 55:429–446.

    Article  Google Scholar 

  • Evans, K. F. and Marshak, A. (2005). Numerical methods, Ch. 4 in 3D Radiative Transfer in Cloud Atmospheres. Springer-Verlag, New York.

    Google Scholar 

  • Ferlay, N. and Isaka, H. (2006). Multiresolution analysis of radiative transfer through inhomogeneous media. Part I: Theoretical development. Journal of Atmospheric Sciences, 63:1200–1212.

    Article  Google Scholar 

  • Goloub, P., Herman, M., Chepfer, H., Riedi, J., Brogniez, G., Couvert, P., and Séze, G. (2000). Cloud thermodynamical phase classification from the POLDER spaceborne instrument. Journal of Geophysical Research (Atmospheres), 105:14747–14760.

    Article  Google Scholar 

  • Hansen, J. E. and Travis, L. D. (1974). Light Scattering in Planetary Atmospheres, Space Science Review, 16:527–610.

    Article  Google Scholar 

  • Herman, M., Deuze, J.-L., Marchand, A., Roger, B., and Lallart, P. (2005). Aerosol remote sensing from POLDER/ADEOS over the ocean: Improved retrieval using a nonspherical particle model. Journal of Geophysical Research (Atmospheres), 110:D10502.

    Google Scholar 

  • Hovenier, J. W. (1969). Symmetry relationships for scattering of polarized light in a slab of randomly oriented particles. Journal of Atmospheric Sciences, 26:488–499.

    Article  Google Scholar 

  • Iwabuchi, H. (2006). Efficient Monte Carlo methods for radiative transfer modeling. Journal of Atmospheric Sciences, 63:2324–2339.

    Article  Google Scholar 

  • Iwabuchi, H. and Hayasaka, T. (2002). Effects of cloud horizontal inhomogeneity on the optical thickness retrieved from moderate-resolution satellite data. Journal of Atmospheric Sciences, 59:2227–2242.

    Article  Google Scholar 

  • Lenoble, J., Herman, M., Deuzé, J. L., Lafrance, B., Santer, R., and Tanré, D. (2007). A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols. Journal of Quantitative Spectroscopy and Radiative Transfer, 107:479–507.

    Article  CAS  Google Scholar 

  • Loeb, N. G. and Coakley, Jr., J. A. (1998). Inference of marine stratus cloud optical depths from satellite measurements: Does 1D theory apply? Journal of Climate, 11:215–233.

    Article  Google Scholar 

  • Marchuk, G. I., Mikhailov, G. A., and Nazaraliev, M. A. (1980). The Monte Carlo Methods in Atmospheric Optics. Springer, New York.

    Google Scholar 

  • Marshak, A. and Davis, A. (2005). 3D Radiative Transfer in Cloudy Atmospheres. Springer, New York.

    Google Scholar 

  • Marshak, A., Platnick, S., Varnai, T., Wen, G., and Cahalan, R. F. (2006). Impact of three-dimensional radiative effects on satellite retrievals of cloud droplet sizes. Journal of Geophysical Research (Atmospheres), 111:D09207.

    Google Scholar 

  • Mayer, B. (2009). Radiative transfer in the cloudy atmosphere. European Physical Journal Conferences, 1:75–99.

    Article  Google Scholar 

  • Mishchenko, M. I., Cairns, B., Kopp, G., Schueler, C. F., Fafaul, B. A., Hansen, J. E., Hooker, R. J., Itchkawich, T., Maring, H. B., and Travis, L. D. (2007). Accurate monitoring of terrestrial aerosols and total solar irradiance: Introducing the Glory mission. Bulletin of the American Meteorological Society, 88:677-691.

    Article  Google Scholar 

  • Pincus, R. and Evans, K. (2009). Computational cost and accuracy in calculating threedimensional radiative transfer: Results for new implementations of Monte Carlo and SHDOM. Journal of Atmospheric Sciences, 66:331-3146.

    Article  Google Scholar 

  • Ramella-Roman, J. C., Prahl, S. A., and Jacques, S. L. (2005). Three Monte Carlo programs of polarized light transport into scattering media: Part I. Optics Express, 13:10392–10405.

    Article  Google Scholar 

  • Riedi, J., Goloub, P., and Marchand, R. T. (2001). Comparison of POLDER cloud phase retrievals to active remote sensors measurements at the ARM SGP site. Geophysical Research Letters, 28:2185–2188.

    Article  Google Scholar 

  • Rozanov, V. V. and Kokhanovsky, A. A. (2006). The solution of the vector radiative transfer equation using the discrete ordinates technique: Selected applications. Atmospheric Research, 79:241–265.

    Article  Google Scholar 

  • Stamnes, K., Tsay, S.-C., Jayaweera, K., and Wiscombe, W. (1988). Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Applied Optics, 27:2502–2509.

    Article  CAS  Google Scholar 

  • Sun, W., Loeb, N. G., and Yang, P. (2006). On the retrieval of ice cloud particle shapes from POLDER measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 101:435–447.

    Article  CAS  Google Scholar 

  • Szczap, F. (2009). 3DCloud, a fast and flexible generator of optical properties of cirrus and stratocumulus/small cumulus based on a simplified dynamical, thermodynamic and stochastic framework. Atmospheric Chemistry and Physics, submitted.

    Google Scholar 

  • Szczap, F., Isaka, H., Saute, M., Guillemet, B., and Iotukhovski, A. (2000). Effective radiative properties of bounded cascade absorbing clouds: Definition of an effective single-scattering albedo. Journal of Geophysical Research (Atmospheres), 105:20635–20648.

    Article  Google Scholar 

  • Van de Hulst, H. C. (1980). Multiple Light Scattering. Tables, Formulas and Applications. Academic, New York.

    Google Scholar 

  • Varnai, T. and Davies, R. (1999). Effects of cloud heterogeneities on shortwave radiation: Comparison of cloud-top variability and internal heterogeneity. Journal of Atmospheric Sciences, 56:4206–4224.

    Article  Google Scholar 

  • Varnai, T. and Marshak, A. (2001). Statistical analysis of the uncertainties in cloud optical depth retrievals caused by three-dimensional radiative effects. Journal of Atmospheric Sciences, 58:1540–1548.

    Article  Google Scholar 

  • Varnai, T. and Marshak, A. (2002). Observations of three-dimensional radiative effects that influence MODIS cloud optical thickness retrievals. Journal of Atmospheric Sciences, 59:1607–1618.

    Article  Google Scholar 

  • Zinner, T. and Mayer, B. (2006). Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research (Atmospheres), 111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cornet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cornet, C., C-Labonnote, L., Szczap, F. (2010). Using a 3-D radiative transfer Monte–Carlo model to assess radiative effects on polarized reflectances above cloud scenes. In: Kokhanovsky, A. (eds) Light Scattering Reviews 5. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10336-0_3

Download citation

Publish with us

Policies and ethics