Skip to main content

Improved Non-tidal Atmospheric and Oceanic De-aliasing for GRACE and SLR Satellites

  • Chapter
  • First Online:
System Earth via Geodetic-Geophysical Space Techniques

Part of the book series: Advanced Technologies in Earth Sciences ((ATES))

Abstract

Non-tidal high-frequency atmospheric and oceanic mass variation models are routinely generated at GFZ Potsdam as so-called GRACE Atmosphere and Ocean De-aliasing Level-1B (AOD1B) products. As the barotropic ocean model PPHA used in release 0 (RL00) and 1 (RL01) has shown some deficiencies the latest versions of AOD1B are based on the baroclinic Ocean Model for Circulation and Tides (OMCT). In this chapter, we summarize the configuration and improvements of OMCT for operational AOD1B RL04 generation. As the temporal resolution of AOD1B products is 6 h and therefore S2 air tide signals may not be accounted for properly, some experiments have been made to investigate the influence of 3-hourly meteorological forcing on the resulting GRACE orbits and gravity fields. It turned out that the time-invariant atmospheric tide model used to correct interpolation errors is sufficiently accurate and even the error caused by a complete neglect of the atmospheric tides is below the current GRACE error level. Finally, the AOD1B RL04 model has been reprocessed back to 1976 for a consistent processing of SLR and subsequent combination with GRACE data. First results of LAGEOS derived C20 values with those from GRACE show higher correlations for the annual amplitudes but also semi-annual signals of unknown nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Biancale R, Bode A (2006) Mean annual and seasonal atmospheric tide models based on 3-hourly and 6-hourly ECMWF surface pressure data. Scientific Technical Report STR06/01, Deutsches GeoForschungsZentrum, Potsdam, Germany.

    Google Scholar 

  • Boy JP, Chao BF (2005) Precise evaluation of atmospheric loading effects on Earth’s time-variable gravity field. J. Geophys. Res. 110(B), doi: 10.1029/2002JB002333.

    Google Scholar 

  • Carrère L, Lyard F (2003) Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing comparisons with observations. Geophys. Res. Lett. 30(6), 1275, doi: 10.1029/2002GL016473.

    Article  Google Scholar 

  • Dobslaw H (2007) Modellierung der allgemeinen ozeanischen Dynamik zur Korrektur und Interpretation von Satellitendaten. Scientific Technical Report 07/10, Deutsches GeoForschungsZentrum, Potsdam, Germany, 113 pp.

    Google Scholar 

  • Dobslaw H, Thomas M (2005) Atmospheric induced oceanic tides from ECMWF forecasts. Geophys. Res. Lett. 32, L10615.

    Article  Google Scholar 

  • Dobslaw H, Thomas M (2007a) Impact of river run-off on global ocean mass redistribution. Geophys. J. Int. 168(2), 527–532.

    Article  Google Scholar 

  • Dobslaw H, Thomas M (2007b) Periodic and transient short-term mass variations in numerical simulations of atmosphere-ocean dynamics. Geotechnol. Sci. Rep. 11, 122–126.

    Google Scholar 

  • Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: Model tuning and validation. J. Hydrol. 270, 105–134.

    Article  Google Scholar 

  • Flechtner F, Schmidt R, Meyer U (2006) De-aliasing of short-term atmospheric and oceanic mass variations for GRACE. In: Flury J, Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U (eds.), Observation of the Earth System from Space, ISBN 3-540-29520-8, Springer, Berlin, pp. 83–97.

    Chapter  Google Scholar 

  • Flechtner F (2007) AOD1B Product Description Document. GRACE 327-750, rev. 3.1, Deutsches GeoForschungsZentrum, Potsdam, Germany, 43 pp.

    Google Scholar 

  • Flechtner F, Thomas M, König R (2008) A long-term model for non-tidal atmospheric and oceanic mass redistributions and its implications on LAGEOS-derived solutions of Earth’s oblateness. Scientific Technical Report 08/12, Deutsches GeoForschungsZentrum, Potsdam, Germany, 24 pp.

    Google Scholar 

  • Greatbatch RJ (1994) A note on the representation of steric sea level in models that conserve volume rather than mass. J. Geophys. Res. 99(C6), 12767–12771.

    Article  Google Scholar 

  • Hellerman S, Rosenstein M (1983) Normal monthly wind stress over the world ocean with error estimates. J. Phys. Oceanogr. 13, 1093–1104.

    Article  Google Scholar 

  • Hirose N, Fukomori I, Zlotnicki V, Ponte R (2001) High-frequency barotropic response to atmospheric disturbances: Sensitivity to forcing, topography, and friction. J. Geophys. Res. 1006, 30987.

    Article  Google Scholar 

  • Kanzow T, Flechtner F, Chave A, Schmidt R, Schwintzer P, Send U (2005) Seasonal variation of ocean bottom pressure derived from Gravity Recovery and Climate Experiment (GRACE): Local validation and global patterns. J. Geophys. Res. (Oceans) 110(C9), 9001, doi: 10.1029/2004JC002772.

    Article  Google Scholar 

  • Kim J (2000) Simulation Study of a Low-Low Satellite-to-Satellite Tracking Mission. Technical Report, University of Texas at Austin, TX.

    Google Scholar 

  • Levitus S (1982) Climatological Atlas of the World Ocean. NOAA Professional Paper 13, US Department of Commerce, 173 pp.

    Google Scholar 

  • Meyer U, Frommknecht B, Flechtner F (2009) Global gravity fields from simulated Level-1 GRACE data. In: Flechtner F, Gruber T, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert J (eds.), Satellite Geodesy and Earth System Science, Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • NOAA (1988) Data Announcement 88-MGG-02, Digital Relief of the Surface of the Earth, NOAA, National Geophysical Data Center, Boulder, CO.

    Google Scholar 

  • Padman L, Fricker H A, Coleman R, Howard S, Erofeeva S (2002) A new tidal model for the Antarctic ice shelves and seas. Ann. Glaciol. 34, 247–254.

    Article  Google Scholar 

  • Ponte R, Ray R (2002) Atmospheric pressure corrections in geodesy and oceanography: A strategy for handling air tides. Geophys. Res. Lett. 29, 6.

    Google Scholar 

  • Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer KH, Schwintzer P, Zhu SY (2005) An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J. Geodyn. 39, 1–10.

    Article  Google Scholar 

  • Schmidt R, Schwintzer P, Flechtner F, Reigber C, Güntner A, Döll P, Ramillien G, Cazenave A, Petrovic S, Jochmann H, Wünsch J (2006) GRACE observations of changes in continental water storage. Global Planet. Change 50, 112–126.

    Article  Google Scholar 

  • Thomas M (2002) Ozeanisch induzierte Erdrotationsschwankungen – Ergebnisse eines Simultanmodells für Zirkulation und ephemeridische Gezeiten im Weltozean, Dissertation, Institut für Meereskunde, Universität Hamburg, Hamburg, 128 pp.

    Google Scholar 

  • Thomas M, Sündermann J, Maier-Reimer E (2001) Consideration of ocean tides in an OGCM and impacts on subseasonal to decadal polar motion excitation. Geophys. Res. Lett. 28(12), 2457–2460.

    Article  Google Scholar 

  • Thompson PF, Bettadpur SV, Tapley BD (2004) Impact of short period, non-tidal, temporal mass variability on GRACE gravity estimates. Geophys. Res. Lett. 31, doi: 10.1029/2003GL019285.

    Google Scholar 

  • Uppala S, Gibson JK, Fiorino M, Hernandez A, Kallberg P, Li X, Onogi K, Saarinen S (1999) ECMWF’s second generation reanalysis – ERA-40. Proceedings of the Second International Conference on Reanalyses, Wokefield Park, Mortimer, Reading, UK, 23–28 August 1999.

    Google Scholar 

  • Velicogna I, Wahr J, Van den Dool H (2001) Can surface pressure be used to remove atmospheric contributions from GRACE data with sufficient accuracy to recover hydrological signals? J. Geophys. Res. 106, 16415–16434, doi: 10.1029/2001JB000228.

    Article  Google Scholar 

  • Wünsch J, Thomas M, Gruber T (2001) Simulation of oceanic bottom pressure for gravity space missions. Geophys. J. Int. 147, 428–434.

    Article  Google Scholar 

Download references

Acknowledgments

This is publication no. GEOTECH-1268 of the programme GEOTECHNOLOGIEN of BMBF and DFG, grant 03F0423. We thank ECMWF for provision of meteorological data necessary to generate AOD1B time series.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Flechtner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flechtner, F., Thomas, M., Dobslaw, H. (2010). Improved Non-tidal Atmospheric and Oceanic De-aliasing for GRACE and SLR Satellites. In: Flechtner, F., et al. System Earth via Geodetic-Geophysical Space Techniques. Advanced Technologies in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10228-8_11

Download citation

Publish with us

Policies and ethics