Skip to main content

The Place of the Electroporation-Based Antitumor Therapies in the Electrical Armamentarium against Cancer

  • Chapter
Book cover Irreversible Electroporation

Part of the book series: Series in Biomedical Engineering ((BIOMENG))

Abstract

Irreversible electroporation (IRE) and electrochemotherapy are two electroporation-based antitumor treatments, both relying on the delivery of short electric pulses of a typical duration of 100 microseconds. Constant current, radiofrequency electromagnetic fields and other types of pulses are also used in the clinics or are tested in preclinical trials. In electrochemotherapy, cell reversible electropermeabilization allows the uptake of non-permeant or low-permeant anticancer drugs and the tumor cells killer is the drug. In IRE, the killer is the electric field which irreversibly perturbs membranes structure and cells homeostasis. The characteristics of IRE and electrochemotherapy are compared, showing the differences and the complementarities of these two antitumor approaches.

Abbreviations: IRE: Irreversible electroporation, ECT: electrochemotherapy, SOP: Standard Operating Procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mir, L.M.: Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry 53, 1–10 (2001)

    Article  Google Scholar 

  2. Orlowski, S., Belehradek Jr., J., Paoletti, C., Mir, L.M.: Transient electropermeabilization of cells in culture. Increase of the cytotoxicity of anticancer drugs. Biochem. Pharmacol. 37, 4727–4733 (1988)

    Article  Google Scholar 

  3. Gehl, J., Skovsgaard, T., Mir, L.M.: Enhancement of cytotoxicity by electropermeabilization: an improved method for screening drugs. Anticancer Drugs 9, 319–325 (1998)

    Article  Google Scholar 

  4. Mir, L.M., Banoun, H., Paoletti, C.: Introduction of definite amounts of nonpermeant molecules into living cells after electropermeabilization: direct access to the cytosol. Exp. Cell. Res. 175, 15–25 (1988)

    Article  Google Scholar 

  5. Heller, L.C., Heller, R.: In vivo electroporation for gene therapy. Hum. Gene. Ther. 17, 890–897 (2006)

    Article  Google Scholar 

  6. Van Tendeloo, V.F., Ponsaerts, P., Berneman, Z.N.: mRNA-based gene transfer as a tool for gene and cell therapy. Current opinion in molecular therapeutics 9, 423–431 (2007)

    Google Scholar 

  7. Miklavcic, D., Semrov, D., Mekid, H., Mir, L.M.: A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim. Biophys. Acta 1523, 73–83 (2000)

    Google Scholar 

  8. Pavselj, N., Bregar, Z., Cukjati, D., Batiuskaite, D., Mir, L.M., Miklavcic, D.: The course of tissue permeabilization studied on a mathematical model of a subcutaneous tumor in small animals. IEEE Trans. Biomed. Eng. 52, 1373–1381 (2005)

    Article  Google Scholar 

  9. Heller, L.C., Ugen, K., Heller, R.: Electroporation for targeted gene transfer. Expert opinion on drug delivery 2, 255–268 (2005)

    Article  Google Scholar 

  10. Mir, L.M., et al.: High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc. Natl. Acad. Sci. U. S. A. 96, 4262–4267 (1999)

    Article  Google Scholar 

  11. Andre, F., et al.: Efficiency of High and Low Voltage Pulse Combinations for Gene Electrotransfer in Muscle, Liver, Tumor and Skin. Hum. Gene. Ther. (2008)

    Google Scholar 

  12. Benninghoff, U., et al.: Clinical improvement and normalized Th1 cytokine profile in early and long-term interferon-alpha treatment in a suspected case of hyper-IgE syndrome. Pediatr. Allergy Immunol. 19, 564–568 (2008)

    Article  Google Scholar 

  13. Hojman, P., et al.: Physiological Effects of High and Low Voltage Pulse Combinations for Gene Electrotransfer in Muscle. Hum. Gene. Ther. (2008)

    Google Scholar 

  14. Bodles-Brakhop, A.M., Draghia-Akli, R.: DNA vaccination and gene therapy: optimization and delivery for cancer therapy. Expert review of vaccines 7, 1085–1101 (2008)

    Article  Google Scholar 

  15. Luxembourg, A., Evans, C.F., Hannaman, D.: Electroporation-based DNA immunisation: translation to the clinic. Expert opinion on biological therapy 7, 1647–1664 (2007)

    Article  Google Scholar 

  16. de Baere, T., et al.: Usefulness of guiding needles for radiofrequency ablative treatment of liver tumors. Cardiovasc Intervent. Radiol. 29, 650–654 (2006)

    Article  Google Scholar 

  17. Zhu, J.C., Yan, T.D., Morris, D.L.: A systematic review of radiofrequency ablation for lung tumors. Annals of surgical oncology 15, 1765–1774 (2008)

    Article  Google Scholar 

  18. Hiraki, T., Gobara, H., Mimura, H., Sano, Y., Kanazawa, S.: Percutaneous radiofrequency ablation of lung cancer. The lancet oncology 9, 604–605 (2008)

    Article  Google Scholar 

  19. Wang, K., Advincula, A.P.: Current thoughts in electrosurgery. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics 97, 245–250 (2007)

    Google Scholar 

  20. Advincula, A.P., Wang, K.: The evolutionary state of electrosurgery: where are we now? Current opinion in obstetrics & gynecology 20, 353–358 (2008)

    Article  Google Scholar 

  21. Nilsson, E., Fontes, E.: Mathematical modelling of physicochemical reactions and transport processes occurring around a platinum cathode during the electrochemical treatment of tumours. Bioelectrochemistry 53, 213–224 (2001)

    Article  Google Scholar 

  22. Azavedo, E., Svane, G., Nordenstrom, B.: Radiological evidence of response to electrochemical treatment of breast cancer. Clinical radiology 43, 84–87 (1991)

    Article  Google Scholar 

  23. Nordenstrom, B.E.: Electrochemical treatment of cancer. I: Variable response to anodic and cathodic fields. American journal of clinical oncology 12, 530–536 (1989)

    Article  Google Scholar 

  24. Xin, Y., Xue, F., Ge, B., Zhao, F., Shi, B., Zhang, W.: Electrochemical treatment of lung cancer. Bioelectromagnetics 18, 8–13 (1997)

    Article  Google Scholar 

  25. Xin, Y., Xue, F., Zhao, F.: Effectiveness of electrochemical therapy in the treatment of lung cancers of middle and late stage. Chinese medical journal 110, 379–383 (1997)

    Google Scholar 

  26. Nilsson, E., et al.: Electrochemical treatment of tumours. Bioelectrochemistry 51, 1–11 (2000)

    Article  Google Scholar 

  27. Hildebrandt, B., et al.: The cellular and molecular basis of hyperthermia. Critical reviews in oncology/hematology 43, 33–56 (2002)

    Article  Google Scholar 

  28. Sreenivasa, G., et al.: Clinical use of the hyperthermia treatment planning system HyperPlan to predict effectiveness and toxicity. Int. J. Radiat. Oncol. Biol. Phys. 55, 407–419 (2003)

    Google Scholar 

  29. Wust, P., et al.: Hyperthermia in combined treatment of cancer. The lancet oncology 3, 487–497 (2002)

    Article  Google Scholar 

  30. Garon, E.B., et al.: In vitro and in vivo evaluation and a case report of intense nanosecond pulsed electric field as a local therapy for human malignancies. Int. J. Cancer 121, 675–682 (2007)

    Article  Google Scholar 

  31. Nuccitelli, R., et al.: Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem. Biophys. Res. Commun. 343, 351–360 (2006)

    Article  Google Scholar 

  32. Mir, L.M., Orlowski, S., Belehradek Jr., J., Paoletti, C.: Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur. J. Cancer 27, 68–72 (1991)

    Article  Google Scholar 

  33. Mir, L.M., et al.: Electrochemotherapy, a new antitumor treatment: first clinical trial. C. R. Acad Sci. III 313, 613–618 (1991)

    Google Scholar 

  34. Belehradek, M., Domenge, C., Luboinski, B., Orlowski, S., Belehradek Jr., J., Mir, L.M.: Electrochemotherapy, a new antitumor treatment. First clinical phase I-II trial. Cancer 72, 3694–3700 (1993)

    Google Scholar 

  35. Sersa, G., Cemazar, M., Miklavcic, D.: Antitumor effectiveness of electrochemotherapy with cis-diamminedichloroplatinum(II) in mice. Cancer Res. 55, 3450–3455 (1995)

    Google Scholar 

  36. Sersa, G., Stabuc, B., Cemazar, M., Jancar, B., Miklavcic, D., Rudolf, Z.: Electrochemotherapy with cisplatin: potentiation of local cisplatin antitumour effectiveness by application of electric pulses in cancer patients. Eur. J. Cancer 34, 1213–1218 (1998)

    Article  Google Scholar 

  37. Sersa, G., Stabuc, B., Cemazar, M., Miklavcic, D., Rudolf, Z.: Electrochemotherapy with cisplatin: clinical experience in malignant melanoma patients. Clin. Cancer Res. 6, 863–867 (2000)

    Google Scholar 

  38. Salford, L.G., Persson, B.R., Brun, A., Ceberg, C.P., Kongstad, P.C., Mir, L.M.: A new brain tumour therapy combining bleomycin with in vivo electropermeabilization. Biochem. Biophys. Res. Commun. 194, 938–943 (1993)

    Article  Google Scholar 

  39. Mir, L.M., et al.: First clinical trial of cat soft-tissue sarcomas treatment by electrochemotherapy. Br. J. Cancer 76, 1617–1622 (1997)

    Google Scholar 

  40. Ramirez, L.H., et al.: Electrochemotherapy on liver tumours in rabbits. Br. J. Cancer 77, 2104–2111 (1998)

    Google Scholar 

  41. Pron, G., et al.: Internalisation of the bleomycin molecules responsible for bleomycin toxicity: a receptor-mediated endocytosis mechanism. Biochem. Pharmacol. 57, 45–56 (1999)

    Article  Google Scholar 

  42. Tounekti, O., Pron, G., Belehradek Jr., J., Mir, L.M.: Bleomycin, an apoptosis-mimetic drug that induces two types of cell death depending on the number of molecules internalized. Cancer Res. 53, 5462–5469 (1993)

    Google Scholar 

  43. Mir, L.M., et al.: Standard Operating Procedures of the Electrochemotherapy. Eur. J. Cancer Supplements 4, 14–25 (2006)

    Article  Google Scholar 

  44. Marty, M., et al.: Electrochemotherapy - an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of the ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Eur. J. Cancer Supplements 4 (2006)

    Google Scholar 

  45. Miklavcic, D., Corovic, S., Pucihar, G., Pavselj, N.: Importance of tumour coverage by sufficiently high local electric field for effective electrochemotherapy. Eur. J. Cancer Supplements 4, 45–51 (2006)

    Article  Google Scholar 

  46. Corovic, S., Al-Sakere, B., Haddad, V., Miklavcic, D., Mir, L.M.: Importance of contact surface between electrodes and treated tissue in electrochemotherapy. Technol. Cancer Res. Treat. 7, 393–400 (2008)

    Google Scholar 

  47. Ivorra, A., Al-Sakere, B., Rubinsky, B., Mir, L.M.: Use of conductive gels for electric field homogenization increases the antitumor efficacy of electroporation therapies. Physics in medicine and biology 53, 6605–6618 (2008)

    Article  Google Scholar 

  48. Gehl, J., Skovsgaard, T., Mir, L.M.: Vascular reactions to in vivo electroporation: characterization and consequences for drug and gene delivery. Biochim. Biophys. Acta 1569, 51–58 (2002)

    Google Scholar 

  49. Sersa, G., Cemazar, M., Miklavcic, D., Chaplin, D.J.: Tumor blood flow modifying effect of electrochemotherapy with bleomycin. Anticancer Res. 19, 4017–4022 (1999)

    Google Scholar 

  50. Roux, S., et al.: Tumor destruction using electrochemotherapy followed by CpG oligodeoxynucleotide injection induces distant tumor responses. Cancer Immunol. Immunother 57, 1291–1300 (2008)

    Article  Google Scholar 

  51. Mir, L.M., et al.: Systemic antitumor effects of electrochemotherapy combined with histoincompatible cells secreting interleukin-2. J. Immunother Emphasis Tumor Immunol. 17, 30–38 (1995)

    Google Scholar 

  52. Al-Sakere, B., et al.: Tumor Ablation with Irreversible Electroporation. PLoS ONE 2, e1135 (2007)

    Article  Google Scholar 

  53. Al-Sakere, B., et al.: A study of the immunological response to tumor ablation with irreversible electroporation. Technol. Cancer Res. Treat. 6, 301–306 (2007)

    Google Scholar 

  54. Edd, J.F., Horowitz, L., Davalos, R.V., Mir, L.M., Rubinsky, B.: In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans. Biomed. Eng. 53, 1409–1415 (2006)

    Article  Google Scholar 

  55. Orlowski, S., An, D., Belehradek Jr., J., Mir, L.M.: Antimetastatic effects of electrochemotherapy and of histoincompatible interleukin-2-secreting cells in the murine Lewis lung tumor. Anticancer Drugs 9, 551–556 (1998)

    Article  Google Scholar 

  56. Sel, D., Cukjati, D., Batiuskaite, D., Slivnik, T., Mir, L.M., Miklavcic, D.: Sequential finite element model of tissue electropermeabilization. IEEE Trans. Biomed. Eng. 52, 816–827 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mir, L.M. (2010). The Place of the Electroporation-Based Antitumor Therapies in the Electrical Armamentarium against Cancer. In: Rubinsky, B. (eds) Irreversible Electroporation. Series in Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05420-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05420-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05419-8

  • Online ISBN: 978-3-642-05420-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics