Skip to main content

Optimization and Numerical Modeling in Irreversible Electroporation Treatment Planning

  • Chapter
Book cover Irreversible Electroporation

Part of the book series: Series in Biomedical Engineering ((BIOMENG))

Abstract

When you overhear someone mention treatment planning, you can bet the conversation is about one of the forms of radiation therapy (RT). In the 1960s, when high powered x-ray delivery systems were readily available to radiation oncologists, the biggest challenge remained to improve the accuracy in locating the tumor and in directing the beams of charged particles. This changed when the first computed tomography (CT) scanners were invented (Lampert et al, 1974). Availability of 3D anatomical data and ever increasing computer processing power gave rise to numerical treatment planning. Together with improved beam generation and delivery technology, treatment planning has enabled RT to better target the tumor and to reduce adverse effects on vital organs (Jaffray et al, 2007). This is exactly what researchers would also like to achieve with irreversible electroporation (IRE): ablate the target tissue and spare as much healthy tissue as possible. Just as treatment planning in RT provides radiation oncologist with the radiation beam intensities and directions that cover the tumor without causing extensive damage to healthy tissue, so can treatment planning in IRE provide physicians with electrode configurations and amplitudes of electric pulses that result in adequate electric field distribution in and around the target tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Sakere, B., Bernat, C., Andr, F., Connault, E., Opolon, P., Davalos, R.V., Mir, L.M.: A study of the immunological response to tumor ablation with irreversible Electroporation. Technology in Cancer Research & Treatment 6(4), 301–305 (2007)

    Google Scholar 

  • Belehradek, J., Orlowski, S., Poddevin, B., Paoletti, C., Mir, L.M.: Electrochemotherapy of spontaneous mammary-tumors in mice. European Journal of Cancer 27(1), 73–76 (1991)

    Article  Google Scholar 

  • Bertacchini, C., Margotti, P.M., Bergamini, E., Lodi, A., Ronchetti, M., Cadossi, R.: Design of an irreversible Electroporation system for clinical use. Technology in Cancer Research & Treatment 6(4), 313–320 (2007)

    Google Scholar 

  • Bortfeld, T.: Optimized planning using physical objectives and constraints. Seminars in Radiation Oncology 9(1), 20–34 (1999)

    Article  Google Scholar 

  • Bortfeld, T.: IMRT: a review and preview. Physics in Medicine and Biology 51(13), R363–R379 (2006)

    Article  Google Scholar 

  • Boyer, A.L., Butler, E.B., DiPetrillo, T.A., Engler, M.J., Fraass, B., Grant, W., Ling, C.C., Low, D.A., Mackie, T.R., Mohan, R., Purdy, J.A., Roach, M., Rosenman, J.G., Verhey, L.J., Wong, J.W., Cumberlin, R.L., Stone, H., Palta, J.R.: Intensity Modulated Radiation T Intensity modulated radiotherapy: Current status and issues of interest. International Journal of Radiation Oncology Biology Physics 51(4), 880–914 (2001)

    Google Scholar 

  • Chandra, A., Dong, L., Huang, E., Kuban, D.A., O’Neill, L., Rosen, I., Pollack, A.: Experience of ultrasound-based daily prostate localization. International Journal of Radiation Oncology Biology Physics 56(2), 436–447 (2003)

    Article  Google Scholar 

  • Corovic, S., Pavlin, M., Miklavcic, D.: Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations. Biomedical Engineering Online 6 (2007)

    Google Scholar 

  • Corovic, S., Zupanic, A., Miklavcic, D.: Numerical modeling and optimization of electric field distribution in subcutaneous tumor treated with electrochemotherapy using needle electrodes. IEEE Transactions on Plasma Science 36(4), 1665–1672 (2008)

    Article  Google Scholar 

  • Cukjati, D., Batiuskaite, D., Andre, F., Miklavcic, D., Mir, L.M.: Real time electroporation control for accurate and safe in vivo non-viral gene therapy. Bioelectrochemistry 70(2), 501–507 (2007)

    Article  Google Scholar 

  • Davalos, R.V., Mir, L.M., Rubinsky, B.: Tissue ablation with irreversible electroporation. Annals of Biomedical Engineering 33(2), 223–231 (2005)

    Article  Google Scholar 

  • Davalos, R.V., Otten, D.M., Mir, L.M., Rubinsky, B.: Electrical impedance tomography for imaging tissue electroporation. IEEE Transactions on Biomedical Engineering 51(5), 761–767 (2004)

    Article  Google Scholar 

  • Davalos, R.V., Rubinsky, B.: Temperature considerations during irreversible electroporation. International Journal of Heat and Mass Transfer 51(23-24), 5617–5622 (2008)

    Article  MATH  Google Scholar 

  • Davalos, R.V., Rubinsky, B., Otten, D.M.: A feasibility study for electrical impedance tomography as a means to monitor tissue electroporation for molecular medicine. IEEE Transactions on Biomedical Engineering 49(4), 400–403 (2002)

    Article  Google Scholar 

  • Dawson, L.A., Sharpe, M.B.: Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncology 7(10), 848–858 (2006)

    Article  Google Scholar 

  • Denet, A.R., Vanbever, R., Preat, V.: Skin electroporation for transdermal and topical delivery. Advanced Drug Delivery Reviews 56(5), 659–674 (2004)

    Article  Google Scholar 

  • Edd, J.F., Davalos, R.V.: Mathematical Modeling of irreversible Electroporation for treatment planning. Technology in Cancer Research & Treatment 6(4), 275–286 (2007)

    Google Scholar 

  • Edd, J.F., Horowitz, L., Davalos, R.V., Mir, L.M., Rubinsky, B.: In vivo results of a new focal tissue ablation technique: Irreversible electroporation. IEEE Transactions on Biomedical Engineering 53(7), 1409–1415 (2006)

    Article  Google Scholar 

  • Esser, A.T., Smith, K.C., Gowrishankar, T.R., Weaver, J.C.: Towards solid tumor treatment by irreversible electroporation: Intrinsic redistribution of fields and currents in tissue. Technology in Cancer Research & Treatment 6(4), 261–273 (2007)

    Google Scholar 

  • Ezzell, G.A.: Genetic and geometric optimization of three-dimensional radiation therapy treatment planning. Medical Physics 23(3), 293–305 (1996)

    Article  Google Scholar 

  • Ezzell, G.A., Galvin, J.M., Low, D., Palta, J.R., Rosen, I., Sharpe, M.B., Xia, P., Xiao, Y., Xing, L., Yu, C.X.: Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT subcommittee of the AAPM radiation therapy committee. Medical Physics 30(8), 2089–2115 (2003)

    Article  Google Scholar 

  • Gabriel, C., Gabriel, S., Corthout, E.: The dielectric properties of biological tissues.1. Literature survey. Physics in Medicine and Biology 41(11), 2231–2249 (1996a)

    Article  Google Scholar 

  • Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues.2. Measurements in the frequency range 10 Hz to 20 GHz. Physics in Medicine and Biology 41(11), 2251–2269 (1996b)

    Article  Google Scholar 

  • Galvin, J.M., Ezzell, G., Eisbrauch, A., Yu, C., Butler, B., Xiao, Y., Rosen, I., Rosenman, J., Sharpe, M., Xing, L., Xia, P., Lomax, T., Low, D.A., Palta, J.: Implementing IMRT in clinical practice: A joint document of the American Society for Therapeutic Radiology and Oncology and the American Association of Physicists in Medicine. International Journal of Radiation Oncology Biology Physics 58(5), 1616–1634 (2004)

    Article  Google Scholar 

  • Gilbert, R.A., Jaroszeski, M.J., Heller, R.: Novel electrode designs for electrochemotherapy. Biochimica Et Biophysica Acta-General Subjects 1334(1), 9–14 (1997)

    Article  Google Scholar 

  • Golzio, M., Rols, M.P., Teissie, J.: In vitro and in vivo electric field-mediated permeabilization, gene transfer, and expression. Methods 33(2), 126–135 (2004)

    Article  Google Scholar 

  • Granot, Y., Rubinsky, B.: Methods of optimization of electrical impedance tomography for imaging tissue electroporation. Physiological Measurement 28(10), 1135–1147 (2007)

    Article  Google Scholar 

  • Heinzerling, J.H., Papiez, L., Chien, S., Anderson, J., Forster, K., Zhang, G., Timmerman, R.: Stereotactic body radiation therapy: Evaluation of setup accuracy and targeting methods for a new couch integrated immobilization system. Technology in Cancer Research & Treatment 7(3), 197–206 (2008)

    Google Scholar 

  • Heller, R., Gilbert, R., Jaroszeski, M.J.: Clinical applications of electrochemotherapy. Advanced Drug Delivery Reviews 35(1), 119–129 (1999)

    Article  Google Scholar 

  • Hojman, P., Zibert, J.R., Gissel, H., Eriksen, J., Gehl, J.: Gene expression profiles in skeletal muscle after gene electrotransfer. Bmc. Molecular Biology 8 (2007)

    Google Scholar 

  • Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge (1992)

    Google Scholar 

  • ICRU-50, Prescribing, recording, and reporting photon beam therapy. Bethesda (1993)

    Google Scholar 

  • ICRU-62, Prescribing, recording, and reporting photon beam therapy (supplement to ICRU Report 50). Bethesda (1999)

    Google Scholar 

  • Ivorra, A., Rubinsky, B.: In vivo electrical impedance measurements during and after electroporation of rat liver. Bioelectrochemistry 70(2), 287–295 (2007)

    Article  Google Scholar 

  • Jaffray, D., Kupelian, P., Djemil, T., Macklis, R.M.: Review of image-guided radiation therapy. Expert Review of Anticancer Therapy 7(1), 89–103 (2007)

    Article  Google Scholar 

  • Lampert, V.L., Zelch, J.V., Cohen, D.N.: Computed tomography of orbits. Radiology 113(2), 351–354 (1974)

    Google Scholar 

  • Lavee, J., Onik, G., Mikus, P., Rubinsky, B.: A novel nonthermal energy source for surgical epicardial atrial ablation: Irreversible electroporation. Heart Surgery Forum 10(2), E162–E167 (2007)

    Article  Google Scholar 

  • Lecchi, M., Fossati, P., Elisei, F., Orecchia, R., Lucignani, G.: Current concepts on imaging in radiotherapy. European Journal of Nuclear Medicine and Molecular Imaging 35(4), 821–837 (2008)

    Article  Google Scholar 

  • Lee, E.W., Loh, C.T., Kee, S.T.: Imaging guided percutaneous irreversible electroporation: Ultrasound and immunohistological correlation. Technology in Cancer Research & Treatment 6(4), 287–293 (2007)

    Google Scholar 

  • Lindegaard, J.C., Tanderup, K., Nielsen, S.K., Haack, S., Gelineck, J.: MRI-guided 3D optimization significantly improves DVH parameters of pulsed-dose-rate brachytherapy in locally advanced cervical cancer. International Journal of Radiation Oncology Biology Physics 71(3), 756–764 (2008)

    Google Scholar 

  • Lyman, J.T., Wolbarst, A.B.: Optimization of radiation-therapy.3. A method of assessing complication probabilities from dose-volume histograms. International Journal of Radiation Oncology Biology Physics 13(1), 103–109 (1987)

    Google Scholar 

  • Macek-Lebar, A., Sersa, G., Kranjc, S., Groselj, A., Miklavcic, D.: Optimisation of pulse parameters in vitro for in vivo electrochemotherapy. Anticancer Research 22(3), 1731–1736 (2002)

    Google Scholar 

  • Mackie, T.R., Scrimger, J.W., Battista, J.J.: A convolution method of calculating dose for 15-MV X-rays. Medical Physics 12(2), 188–196 (1985)

    Article  Google Scholar 

  • Maor, E., Ivorra, A., Leor, J., Rubinsky, B.: The effect of irreversible electroporation on blood vessels. Technology in Cancer Research & Treatment 6(4), 307–312 (2007)

    Google Scholar 

  • Maor, E., Ivorra, A., Leor, J., Rubinsky, B.: Irreversible electroporation attenuates neointimal formation after angioplasty. IEEE Transactions on Biomedical Engineering 55(9), 2268–2274 (2008)

    Article  Google Scholar 

  • Miklavcic, D., Beravs, K., Semrov, D., Cemazar, M., Demsar, F., Sersa, G.: The importance of electric field distribution for effective in vivo electroporation of tissues. Biophysical Journal 74(5), 2152–2158 (1998)

    Article  Google Scholar 

  • Miklavcic, D., Corovic, S., Pucihar, G., Pavselj, N.: Importance of tumour coverage by sufficiently high local electric field for effective electrochemotherapy. Ejc Supplements 4(11), 45–51 (2006a)

    Google Scholar 

  • Miklavcic, D., Kotnik, T.: Electroporation for electrochemotherapy and gene therapy. In: Rosch, P., Markov, M. (eds.) Bioelectromagnetic medicine, pp. 637–656. Marcel Decker, New York (2004)

    Google Scholar 

  • Miklavcic, D., Pavselj, N., Hart, F.X.: Electric properties of tissues. In: Wiley Encyclopedia of Biomedical Engineering. John Wiley & Sons, New York (2006b)

    Google Scholar 

  • Miklavcic, D., Semrov, D., Mekid, H., Mir, L.M.: A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochimica Et Biophysica Acta-General Subjects 1523(1), 73–83 (2000)

    Article  Google Scholar 

  • Miller, L., Leor, J., Rubinsky, B.: Cancer cells ablation with irreversible electroporation. Technology in Cancer Research & Treatment 4(6), 699–705 (2005)

    Google Scholar 

  • Mir, L.M., Bureau, M.F., Gehl, J., Rangara, R., Rouy, D., Caillaud, J.M., Delaere, P., Branellec, D., Schwartz, B., Scherman, D.: High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proceedings of the National Academy of Sciences of the United States of America 96(8), 4262–4267 (1999)

    Article  Google Scholar 

  • Mir, L.M., Glass, L.F., Sersa, G., Teissie, J., Domenge, C., Miklavcic, D., Jaroszeski, M.J., Orlowski, S., Reintgen, D.S., Rudolf, Z., Belehradek, M., Gilbert, R., Rols, M.P., Belehradek, J., Bachaud, J.M., DeConti, R., Stabuc, B., Cemazar, M., Coninx, P., Heller, R.: Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy. British Journal of Cancer 77(12), 2336–2342 (1998)

    Google Scholar 

  • Neumann, E., Schaeferridder, M., Wang, Y., Hofschneider, P.H.: Gene transfer into mouse lyoma cells by electroporation in high electric-fields. Embo Journal 1(7), 841–845 (1982)

    Google Scholar 

  • Newbold, K., Partridge, M., Cook, G., Sohaib, A., Charles-Edwards, E., Rhys-Evans, P., Harrington, K., Nutting, C.: Advanced imaging applied to radiotherapy planning in head and neck cancer: a clinical review. British Journal of Radiology 79(943), 554–561 (2006)

    Article  Google Scholar 

  • Onik, G., Mikus, P., Rubinsky, B.: Irreversible electroporation: Implications for prostate ablation. Technology in Cancer Research & Treatment 6(4), 295–300 (2007)

    Google Scholar 

  • Orlowski, S., Belehradek, J., Paoletti, C., Mir, L.M.: Transient electropermeabilization of cells in culture - increase of the cyto-toxicity of anticancer drugs. Biochemical Pharmacology 37(24), 4727–4733 (1988)

    Article  Google Scholar 

  • Pavlin, M., Miklavcic, D.: Theoretical and experimental analysis of conductivity, ion diffusion and molecular transport during cell electroporation — Relation between short-lived and long-lived pores. Bioelectrochemistry 74, 38–46 (2008)

    Article  Google Scholar 

  • Pavselj, N., Bregar, Z., Cukjati, D., Batiuskaite, D., Mir, L.M., Miklavcic, D.: The course of tissue permeabilization studied on a mathematical model of a subcutaneous tumor in small animals. IEEE Transactions on Biomedical Engineering 52(8), 1373–1381 (2005)

    Article  Google Scholar 

  • Pavselj, N., Miklavcic, D.: Numerical modeling in electroporation-based biomedical applications. Radiology and Oncology 42(3), 159–168 (2008a)

    Article  Google Scholar 

  • Pavselj, N., Miklavcic, D.: Numerical models of skin electropermeabilization taking into account conductivity changes and the presence of local transport regions. IEEE Transactions on plasma science, 1650–1658 (2008b)

    Google Scholar 

  • Pliquett, U.: Joule heating during solid tissue electroporation. Medical & Biological Engineering & Computing 41(2), 215–219 (2003)

    Article  Google Scholar 

  • Pliquett, U., Weaver, J.C.: Electroporation of human skin: Simultaneous measurement of changes in the transport of two fluorescent molecules and in the passive electrical properties. Bioelectrochemistry and Bioenergetics 39(1), 1–12 (1996)

    Article  Google Scholar 

  • Polk, C., Postow, E.: Handbook of Biological Effects of Electromagnetic Fields. CRC Press, Boca Raton (1996)

    Google Scholar 

  • Potter, R., Fidarova, E., Kirisits, C., Dirnopoulos, J.: Image-guided adaptive brachytherapy for cervix carcinoma. Clinical Oncology 20(6), 426–432 (2008a)

    Article  Google Scholar 

  • Potter, R., Kirisits, C., Fidarova, E.F., Dimopoulos, J.C.A., Berger, D., Tanderup, K., Lindegaard, J.C.: Present status and future of high-precision image guided adaptive brachytherapy for cervix carcinoma. Acta Oncologica 47(7), 1325–1336 (2008b)

    Article  Google Scholar 

  • Prausnitz, M.R.: A practical assessment of transdermal drug delivery by skin electroporation. Advanced Drug Delivery Reviews 35(1), 61–76 (1999)

    Article  Google Scholar 

  • Puc, M., Corovic, S., Flisar, K., Petkovsek, M., Nastran, J., Miklavcic, D.: Techniques of signal generation required for electropermeabilization. Survey of electropermeabilization devices. Bioelectrochemistry 64(2), 113–124 (2004)

    Article  Google Scholar 

  • Pucihar, G., Kotnik, T., Miklavcic, D., Teissie, J.: Kinetics of transmembrane transport of small molecules into electropermeabilized cells. Biophysical Journal 95(6), 2837–2848 (2008)

    Article  Google Scholar 

  • Pucihar, G., Mir, L.M., Miklavcic, D.: The effect of pulse repetition frequency on the uptake into electropermeabilized cells in vitro with possible applications in electrochemotherapy. Bioelectrochemistry 57(2), 167–172 (2002)

    Article  Google Scholar 

  • Purdy, J., Starkschall, G.: A practical guide to 3-D planning and conformal radiation therapy. Advanced Medical Publishing, Madison (1999)

    Google Scholar 

  • Reynaert, N., van der Marck, S.C., Schaart, D.R., Van der Zee, W., Van Vliet-Vroegindeweij, C., Tomsej, M., Jansen, J., Heijmen, B., Coghe, M., De Wagter, C.: Monte Carlo treatment planning for photon and electron beams. Radiation Physics and Chemistry 76(4), 643–686 (2007)

    Article  Google Scholar 

  • Rubinsky, B., Onik, G., Mikus, P.: Irreversible electroporation: A new ablation modality - Clinical implications. Technology in Cancer Research & Treatment 6(1), 37–48 (2007)

    Google Scholar 

  • Rubinsky, J., Onik, G., Mikus, P., Rubinsky, B.: Optimal Parameters for the Destruction of Prostate Cancer Using Irreversible Electroporation. Journal of Urology 180(6), 2668–2674 (2008)

    Article  Google Scholar 

  • Ruchala, K.J., Olivera, G.H., Schloesser, E.A., Hinderer, R., Mackie, T.R.: Calibration of a tomotherapeutic MVCT system. Physics in Medicine and Biology 45(4), N27–N36 (2000)

    Article  Google Scholar 

  • Scott-Taylor, T.H., Pettengell, R., Clarke, I., Stuhler, G., La Barthe, M.C., Walden, P., Dalgleish, A.G.: Human tumour and dendritic cell hybrids generated by electrofusion: potential for cancer vaccines. Biochimica Et Biophysica Acta-Molecular Basis of Disease 1500(3), 265–279 (2000)

    Article  Google Scholar 

  • Sel, D., Cukjati, D., Batiuskaite, D., Slivnik, T., Mir, L.M., Miklavcic, D.: Sequential finite element model of tissue electropermeabilization. IEEE Transactions on Biomedical Engineering 52(5), 816–827 (2005)

    Article  Google Scholar 

  • Sel, D., Lebar, A.M., Miklavcic, D.: Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization. IEEE Transactions on Biomedical Engineering 54(5), 773–781 (2007)

    Article  Google Scholar 

  • Semrov, D., Miklavcic, D.: Calculation of the electrical parameters in electrochemotherapy of solid tumours in mice. Computers in Biology and Medicine 28(4), 439–448 (1998)

    Article  Google Scholar 

  • Serša, G., Čemažar, M., Miklavčič, D., Rudolf, Z.: Electrochemotherapy of tumours. Radiology & Oncology 40, 163–174 (2006)

    Google Scholar 

  • Sharpe, M.B., Battista, J.J.: Dose calculations using convolution and superposition principles - the orientation of dose spread kernels in divergent X-ray beams. Medical Physics 20(6), 1685–1694 (1993)

    Article  Google Scholar 

  • Skerl, D., Likar, B., Fitzpatrick, J.M., Pernus, F.: Comparative evaluation of similarity measures for the rigid registration of multi-modal head images. Physics in Medicine and Biology 52(18), 5587–5601 (2007)

    Article  Google Scholar 

  • Slomka, P.J.: Software approach to merging molecular with anatomic information. Journal of Nuclear Medicine 45, 36S–45S (2004)

    Google Scholar 

  • Smith, K.C., Weaver, J.C.: Active mechanisms are needed to describe cell responses to submicrosecond, megavolt-per-meter pulses: Cell models for ultrashort pulses. Biophysical Journal 95(4), 1547–1563 (2008)

    Article  Google Scholar 

  • Trontelj, K., Rebersek, M., Kanduser, M., Curin-Serbec, V., Sprohar, M., Miklavcic, D.: Optimization of bulk cell electrofusion in vitro for production of human–mouse heterohybridoma cells. Bioelectrochemistry 74, 124–129 (2008)

    Article  Google Scholar 

  • Vanuytsel, L.J., Vansteenkiste, J.F., Stroobants, S.G., De Leyn, P.R., De Wever, W., Verbeken, E.K., Gatti, G.G., Huyskens, D.P., Kutcher, G.J.: The impact of F-18-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiotherapy and Oncology 55(3), 317–324 (2000)

    Article  Google Scholar 

  • Weaver, J.C.: Electroporation of biological membranes from multicellular to nano scales. IEEE Transactions on Dielectrics and Electrical Insulation 10(5), 754–768 (2003)

    Article  MathSciNet  Google Scholar 

  • Webb, S.: The physical basis of IMRT and inverse planning. British Journal of Radiology 76(910), 678–689 (2003)

    Article  Google Scholar 

  • Zupanic, A., Corovic, S., Miklavcic, D.: Optimization of electrode position and electric pulse amplitude in electrochemotherapy. Radiology and Oncology 42(2), 93–101 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Županič, A., Miklavčič, D. (2010). Optimization and Numerical Modeling in Irreversible Electroporation Treatment Planning. In: Rubinsky, B. (eds) Irreversible Electroporation. Series in Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05420-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05420-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05419-8

  • Online ISBN: 978-3-642-05420-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics