Skip to main content

Thermal Aspects of Irreversible Electroporation

  • Chapter
Book cover Irreversible Electroporation

Part of the book series: Series in Biomedical Engineering ((BIOMENG))

Abstract

Irreversible electroporation (IRE) is a promising new technique for the ablation of tumors and arrhythmogenic regions in the heart (Davalos, Mir et al. 2005; Edd, Horowitz et al. 2006; Al-Sakere, Andre et al. 2007; Edd and Davalos 2007; Onik, Mikus et al. 2007; Rubinsky 2007). One of its primary advantages over other ablation techniques lies in its mechanism to kill undesirable cells by affecting the cell membrane without thermally damaging major blood vessels, connective tissue, nerves and the surrounding tissue. IRE’s ability to create complete and predictable tissue ablation with sharp transition between normal and necrotic tissue will have great advantages in a variety of medical applications (Rubinsky 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Sakere, B., Andre, F., et al.: Tumor ablation with irreversible electroporation. PLoS ONE 2(11), e1135 (2007)

    Article  Google Scholar 

  • Al-Sakere, B., Bernat, C., et al.: A study of the immunological response to tumor ablation with irreversible electroporation. Technology in Cancer Research and Treatement 6, 301–306 (2007)

    Google Scholar 

  • Becker, S.M., Kuznetsov, A.V.: Numerical modeling of in vivo plate electroporation thermal dose assessment. Journal of Biomechanical Engineering 128(1), 76–84 (2006)

    Article  Google Scholar 

  • Becker, S.M., Kuznetsov, A.V.: Thermal Damage Reduction Associated with in Vivo Skin Electroporation: A Numerical Investigation Justifying Aggressive Pre-Cooling. International Journal of Heat and Mass Transfer 50, 105–116 (2007)

    Article  MATH  Google Scholar 

  • Bhatt, D.L., Gaylor, D.C., et al.: Rhabdomyolysis due to pulses electric fields. Plast. Reconstr. Surg. 86(1), 1–11 (1990)

    Article  Google Scholar 

  • Damianou, C., Hynynen, K., et al.: Application of the Thermal Dose Concept for Predicting the Necrosed Tissue Volume During Ultrasound Surgery. In: Ultrasonics Symposium (1993)

    Google Scholar 

  • Davalos, R.V., Mir, L.M., et al.: Tissue ablation with irreversible electroporation. Annals of Biomedical Engineering 33(2), 223–231 (2005)

    Article  Google Scholar 

  • Davalos, R.V., Otten, D.M., et al.: Electrical impedance tomography for imaging tissue electroporation. IEEE Transactions on Biomedical Engineering 51(5), 761–767 (2004)

    Article  Google Scholar 

  • Davalos, R.V., Otten, D.M., et al.: A feasibility study for electrical impedance tomography as a means to monitor tissue electroporation for molecular medicine. IEEE Transactions on Biomedical Engineering 49(4), 400–403 (2002)

    Article  Google Scholar 

  • Davalos, R.V., Rubinsky, B.: Temperature considerations during irreversible electroporation. Int. J. Heat. Mass. Tran. 51, 5617–5622 (2008)

    Article  MATH  Google Scholar 

  • Davalos, R.V., Rubinsky, B., et al.: Theoretical analysis of the thermal effects during in vivo tissue electroporation. Bioelectrochemistry 61(1-2), 99–107 (2003)

    Article  Google Scholar 

  • Deng, Z.S., Liu, J.: Blood perfusion-based model for characterizing the temperature fluctuations in living tissue. Phys. A STAT Mech. Appl. 300, 521–530 (2001)

    Article  MATH  Google Scholar 

  • Diller, K.R., Hayes, L.J.: A finite element model of burn injury in blood-perfused skin. J. Biomech. Eng. 105(3), 300–307 (1983)

    Article  Google Scholar 

  • Duck, F.A.: Physical Properties of Tissues: A Comprehensive Reference Book. Academic Press, San Diego (1990)

    Google Scholar 

  • Edd, J., Horowitz, L., et al.: In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Transactions on Biomedical Engineering 53(7), 1409–1415 (2006)

    Article  Google Scholar 

  • Edd, J.F., Davalos, R.V.: Mathematical modeling of irreversible electroporation for treatment planning. Technology in Cancer Research and Treatment 6, 275–286 (2007)

    Google Scholar 

  • Feng, Y., Tinsley Oden, J., et al.: A two-state cell damage model under hyperthermic conditions: theory and in vitro experiments. J. Biomech. Eng. 130(4), 041016 (2008)

    Article  Google Scholar 

  • Foster, K.R., Lozano-Nieto, A., et al.: Heating of Tissues by Microwaves: A Model Analysis. Bioelectromagnetics 19, 420–428 (1998)

    Article  Google Scholar 

  • Gabriel, B., Teissie, J.: Control by electrical parameters of short- and long-term cell death resulting from electropermeabilization of Chinese hamster ovary cells. Biochim. Biophys. Acta 1266(2), 171–178 (1995)

    Article  Google Scholar 

  • Gabriel, S., Lau, R.W., et al.: The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41(11), 2271–2293 (1996)

    Article  Google Scholar 

  • Gehl, J., Skovsgaard, T., et al.: Vascular reactions to in vivo electroporation: characterization and consequences for drug and gene delivery. Biochimica et Biophysica Acta 1569, 51–58 (2002)

    Google Scholar 

  • Heisler, M.P.: Temperature charts for induction and constant temperature heating. ASME Transactions (1947)

    Google Scholar 

  • Henriques, F.C., Moritz, A.R.: Studies in thermal injuries, V: the predictability and the significance of thermally induced rate processes leading to irreversible epidermal damage. Arch. Pathol. 43, 489–502 (1947)

    Google Scholar 

  • Hulsheger, H., Niemann, E.G.: Lethal effects of high-voltage pulses on E. coli K12. Radiat. Environ. Biophys. 18(4), 281–288 (1980)

    Article  Google Scholar 

  • Ivorra, A., Rubinsky, B.: Electric field modulation in tissue electroporation with electrolytic and non-electrolytic additives. Bioelectrochemistry 70(2), 551–560 (2007)

    Article  Google Scholar 

  • Jiang, S.C., Ma, N., et al.: Effects of thermal properties and geometrical dimensions on skin burn injuries. Burns 28(8), 713–717 (2002)

    Article  Google Scholar 

  • Jones, J.L., Proskauer, C.C., et al.: Ultrastructural injury to chick myocardial cells in vitro following ”electric countershock”. Circ. Res. 46(3), 387–394 (1980)

    Google Scholar 

  • Kekez, M.M., Savic, P., et al.: Contribution to the biophysics of the lethal effects of electric field on microorganisms. Biochim. Biophys. Acta 1278(1), 79–88 (1996)

    Article  Google Scholar 

  • Krassowska, W., Nanda, G.S., et al.: Viability of cancer cells exposed to pulsed electric fields: the role of pulse charge. Ann. Biomed. Eng. 31(1), 80–90 (2003)

    Article  Google Scholar 

  • Lavee, J., Onik, G., et al.: A Novel Nonthermal Energy Source for Surgical Epicardial Atrial Ablation: Irreversible Electroporation. The Heart Surgery Forum 10(2), E162–E167 (2007)

    Article  Google Scholar 

  • Lee, E.W., Loh, C.T., et al.: Imaging guided percutaneous irreversible electroporation: ultrasound and immunological correlation. Technology in Cancer Research and Treatement 6(4), 287–294 (2007)

    Google Scholar 

  • Lee, R.C.: Cell Injury by Electric Forces. Annals of the New York Academy of Sciences 1066, 85–91 (2005)

    Article  Google Scholar 

  • Lee, R.C., Despa, F.: Distinguishing Electroporation from Thermal Injuries in Electrical Shock by MR Imaging. In: Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China. IEEE, Los Alamitos (2005)

    Google Scholar 

  • Lee, R.C., Kolodney, M.S.: Electrical injury mechanisms: Electrical breakdown of cell membranes. Plast. Reconstr. Surg. 80(5), 672–679 (1987)

    Article  Google Scholar 

  • Lee, R.C., Zhang, D., et al.: Biophysical Injury Mechanisms in Electrical Shock Trauma. Ann. Rev. Biomed. Eng. 2, 477–509 (2000)

    Article  Google Scholar 

  • Lubicki, P., Jarayam, S.: High voltage pulse application for the destruction of the Gram-negative bacterium. Bioelectrochem. Bioenerg. 43, 135–141 (1997)

    Article  Google Scholar 

  • Maor, E., Ivorra, A., et al.: The effect of irreversible electroporation on blood vessels. Technology in Cancer Research and Treatement 6(4), 307–312 (2007)

    Google Scholar 

  • Martin, G.T., Pliquett, U.F., et al.: Theoretical analysis of localized heating in human skin subjected to high voltage pulses. Bioelectrochemistry 57(1), 55–64 (2002)

    Article  Google Scholar 

  • Miklavcic, D., Beravs, K., et al.: The importance of electric field distribution for effective in vivo electroporation of tissues. Biophysical Journal 74(5), 2152–2158 (1998)

    Article  Google Scholar 

  • Miklavcic, D., Sel, D., et al.: Sequential Finite Element Model of Tissue Electropermeabilisation. In: Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, CA (2004)

    Google Scholar 

  • Miller, L., Leor, J., et al.: Cancer cells ablation with irreversible electroporation. Technol. Cancer Res. Treat. 4(6), 699–705 (2005)

    Google Scholar 

  • Mir, L.M., Orlowski, S.: Mechanisms of electrochemotherapy. Advanced drug delivery reviews 35, 107–118 (1999)

    Article  Google Scholar 

  • Okino, M., Tomie, H., et al.: Optimal electric conditions in electrical impulse chemotherapy. Jpn. J. Cancer Res. 83(10), 1095–1101 (1992)

    Google Scholar 

  • Onik, G., Mikus, P., et al.: Irreversible electroporation: implications for prostate ablation. Technol. Cancer Res. Treat. 6(4), 295–300 (2007)

    Google Scholar 

  • Pavlin, M., Miklavcic, D.: Effective Conductivity of a Suspension of Permeabilized Cells: A Theoretical Analysis. Biophysical Journal 85, 719–729 (2003)

    Article  Google Scholar 

  • Pennes, H.H.: Analysis of tissue and arterial blood temperatures in the resting forearm. J. Appl. Physiol. 1, 93–122 (1948)

    Google Scholar 

  • Ramirez, L.H., Orlowski, S., et al.: Electrochemotherapy on liver tumours in rabbits. Br. J. Cancer 77, 2104–2111 (1998)

    Google Scholar 

  • Rubinsky, B.: Irreversible Electroporation in Medicine. Technology in Cancer Research and Treatement 6(4), 255–260 (2007)

    Google Scholar 

  • Rubinsky, B., Onik, G., et al.: Irreversible electroporation: A new ablation modality – clinical implications. Technology in Cancer Research and Treatment 6(1), 37–48 (2007)

    Google Scholar 

  • Sale, A.J., Hamilton, W.A.: Effects of high electric fields on micro-organisms. 1. Killing of bacteria and yeasts. Biochimica et Biophysica Acta 148, 781–788 (1967)

    Google Scholar 

  • Sapareto, S., Dewey, W.: Thermal dose determination in cancer therapy. Int. J. radiation oncology Biol. Phys. 10, 787–800 (1984)

    Google Scholar 

  • Schneider, P.J.: Conduction Heat Transfer. Addison Wesley, Reading (1955)

    Google Scholar 

  • Schoenbach, K.H., Peterkin, F.E., et al.: The effect of pulsed fields on biological cells: Experiments and applications. IEEE Trans. Biomed. Eng. 25, 284–292 (1997)

    Google Scholar 

  • Sersa, G., Cemazar, M., et al.: Tumour blood flow changes induced by application of electric pulses. Eur. J. Cancer 35, 672–677 (1999)

    Article  Google Scholar 

  • Shafiee, H., Garcia, P.A., et al.: A Preliminary Study to Delineate Irreversible Electroporation From Thermal Damage Using the Arrhenius Equation. ASME J. of Biomechanical Engineering 131 (2009)

    Google Scholar 

  • Somersalo, E., Cheney, M., et al.: Existence and Uniqueness for Electrode Models for Electric-Current Computed-Tomography. SIAM Journal on Applied Mathematics 52(4), 1023–1040 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Swarup, A., Stuchly, S., et al.: Dielectric properties of mouse MCA1 fibrosarcoma at different stages of development. Bioelectromagnetics 12, 1–8 (1991)

    Article  Google Scholar 

  • Tropea, B.I., Lee, R.C.: Thermal injury kinetics in electrical trauma. J. Biomech. Eng. 114(2), 241–250 (1992)

    Article  Google Scholar 

  • Vernhes, M.C., Cabanes, P.A., et al.: Chinese hamster ovary cells sensitivity to localized electrical stresses. Bioelectrochem. Bioenerg. 48(1), 17–25 (1999)

    Article  Google Scholar 

  • Weaver, J.C.: Electroporation of cells and tissues. IEEE Transactions on Plasma Science 28(1), 24–33 (2000)

    Article  Google Scholar 

  • Weaver, J.C.: Electroporation of Biological Membranes from Multicellular to Nano Scales. IEEE Transactions on Dielectrics and Electrical Insulation 10(5), 754–768 (2003)

    Article  MathSciNet  Google Scholar 

  • Weaver, J.C., Chizmadzhev, Y.A.: Theory of electroporation: a review. Bioelectrochem. Bioenerg. 41, 135–160 (1996)

    Article  Google Scholar 

  • Weaver, J.C., Powell, K.T.: Theory of electroporation. In: Neumann, E. (ed.) Electroporation and Electrofusion in Cell Biology, vol. 7. Plenum Press, New York (1989)

    Google Scholar 

  • White, F.M.: Heat and Mass Transfer. Addison-Wesley Publishing Company, Reading (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Davalos, R.V., Garcia, P.A., Edd, J.F. (2010). Thermal Aspects of Irreversible Electroporation. In: Rubinsky, B. (eds) Irreversible Electroporation. Series in Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05420-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05420-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05419-8

  • Online ISBN: 978-3-642-05420-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics