Skip to main content

Fault-Containment in Weakly-Stabilizing Systems

  • Conference paper
Stabilization, Safety, and Security of Distributed Systems (SSS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5873))

Included in the following conference series:

Abstract

This paper presents an exercise in fault-containment on a weakly-stabilizing system. The exercise uses the weakly stabilizing leader election algorithm in [3], and shows how the effect of single faults can be contained both in space and in time. Our algorithm confines the effect of any single fault to the constant-distance neighborhood of the faulty process, and the contamination number is restricted to 4 with high probability for an array of processes. We also show that the expected recovery time from a single fault is independent of the array size, i.e., the solution is fault-containing in time too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kutten, S., Patt-Shamir, B.: Stabilizing time-adaptive protocols. Theor. Comput. Sci. 220, 93–111 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dasgupta, A., Ghosh, S., Xiao, X.: Probabilistic fault-containment. In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 189–203. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Devismes, S., Tixeuil, S., Yamashita, M.: Weak vs. Self vs. Probabilistic Stabilization. In: 28th IEEE International Conference on Distributed Computing Systems (ICDCS 2008), Beijing, China, June 17-20 (2008)

    Google Scholar 

  4. Kutten, S., Peleg, D.: Fault-local distributed mending. In: Proceedings of the 14th Annual ACM Symposium on Principles of Distributed Computing, pp. 20–27 (1995)

    Google Scholar 

  5. Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault- containing self-stabilizing distributed algorithms. In: Proceedings of the 15th Annual ACM Symposium on Principles of Distributed Computing, pp. 45–54 (1996)

    Google Scholar 

  6. Beauquier, J., Genolini, C., Kutten, S.: Optimal reactive k-stabilization the case of mutual exclusion. In: Proceedings of the 18th Annual ACM Symposium on Principles of Distributed Computing, pp. 209–218 (1999)

    Google Scholar 

  7. Beauquier, J., Delaet, S., Haddad, S.: A 1-Strong Self-Stabilizing Transformer. In: Proceedings of the Eighth Symposium on Self-Stabilizing Systems (2006)

    Google Scholar 

  8. Coolidge, J.L.: The Gambler’s Ruin. The Annals of Mathematics 10(4), 181–192 (1909)

    Article  MathSciNet  Google Scholar 

  9. Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems. In: Proceedings of the Second Workshop on Self-Stabilizing Systems, pp. 3.1-3.15 (1995)

    Google Scholar 

  10. Ghosh, S., Gupta, A., Pemmaraju, S.V.: Fault-containing network protocols. In: Proceedings of 12th Annual ACM Symposium on Applied Computing (1997)

    Google Scholar 

  11. Gouda, M.G.: The Theory of Weak Stabilization. In: Datta, A.K., Herman, T. (eds.) WSS 2001. LNCS, vol. 2194, pp. 114–123. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Herman, T.: Superstabilizing mutual exclusion. In: Proceedings of 1st International Conference on Parallel and Distributed Processing: Techniques and Applications (1995)

    Google Scholar 

  13. Ghosh, S., Gupta, A.: An exercise in fault-containment: Self- stabilizing leader election. Informat. Process. Lett. 5(59), 281–288 (1996)

    Article  MathSciNet  Google Scholar 

  14. Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault-containing self-stabilizing distributed protocols. Distributed Computing (2007)

    Google Scholar 

  15. Ghosh, S., Gupta, A., Pemmaraju, S.V.: A fault-containing self-stabilizing algorithm for spanning trees. J. Comput. Informat. 2, 322–338 (1996)

    Google Scholar 

  16. Durrett, R.: Probability: theory and examples. Duxbury Press, Belmont (1996)

    Google Scholar 

  17. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dasgupta, A., Ghosh, S., Xiao, X. (2009). Fault-Containment in Weakly-Stabilizing Systems. In: Guerraoui, R., Petit, F. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2009. Lecture Notes in Computer Science, vol 5873. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05118-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05118-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05117-3

  • Online ISBN: 978-3-642-05118-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics