Skip to main content

Nanoporous Template Synthesized Nanotubes for Bio-related Applications

  • Chapter
  • 1173 Accesses

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

Abstract

The porous template synthesis method has attracted significant interest as a versatile approach to prepare tubular nanomaterials with tailored properties. The process involves deposition or synthesis of various materials such as polymers, nanoparticles, proteins, dyes, and organic or inorganic small molecules within the porous templates, which are subsequently removed to yield free-standing nanotubes. At the same time, this approach permits the formation of composite nanotubes with the engineering features including size, shape, composition, and function. In this chapter, we summarize the synthesis and properties of various composite nanotubes based on template method combining with layer-by-layer assembly, sol—gel chemistry and polymerization. These nanotubes possess potential applications in biomedical fields such as bioseparation, biocatalysis, biosensor, and drug delivery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aegerter MA, Mehrota RC, Oehme I, Reisfeld R, Sakka S, Wolfbeis O, Jorgensen CK (1996) Optical and electronic phenomena in sol-gel glasses and modern applications. Berlin: Springer-Verlag: 85

    Google Scholar 

  • Ai S, He Q, Tao C, Zheng S, Li J (2005) Conductive polypyrrole and poly(allylamine hydrochloride) nanotubes fabricated with layer-by-layer assembly. Macromol Rapid Comm 20:1965–1969

    Google Scholar 

  • Ai S, Lu G, He Q, Li J (2003) Highly flexible polyelectrolyte nanotubes. J Am Chem Soc 125:11140–11141

    CAS  Google Scholar 

  • An Z, Lu G, Möhwald H, Li J (2004) Self-assembly of human serum albumin (HSA) and L-α dimyristoylphosphatidic acid (DMPA) microcapsules for controlled drug release. Chem Eur J 10:5848–5852

    CAS  Google Scholar 

  • An Z, Tao C, Lu G, Möhwald H, Zheng S, Cui Y, Li J (2005) Fabrication and characterization of human serum albumin and L-α-dimyristoylphosphatidic acid microcapsules based on template technique. Chem Mater 17:2514–2519

    CAS  Google Scholar 

  • Ariga K, Nakanishi T, Hill JP (2007) Self-assembled microstructures of functional molecules. Curr Opin Colloid Interface 12:106–120

    CAS  Google Scholar 

  • Baughman RH, Zakhidov AA, Heer WA (2002) Carbon nanotubes: the route toward applications. Science 297:787–792

    CAS  Google Scholar 

  • Bertrand P, Jonas A, Laschewsky A, Legras R (2000) Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol Rapid Commun 21:319–348

    CAS  Google Scholar 

  • Bischoff BL, Anderson MA (1995) Peptization process in the sol-gel preparation of porous anatase (TiO2). Chem Mater 7:1772–1778

    CAS  Google Scholar 

  • Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013

    CAS  Google Scholar 

  • Brumlik CJ, Martin CR (1991) Template synthesis of metal microtubules. J Am Chem Soc 113:3174–3175

    CAS  Google Scholar 

  • Brumlik CJ, Menon VP, Martin CR (1994) Template synthesis of metal microtubule ensembles utilizing chemical, electrochemical, and vacuum deposition techniques. J Mater Res 9:1174–1183

    CAS  Google Scholar 

  • Cai Z, Lei J, Liang W, Martin CR (1991) Molecular and supermolecular origins of enhanced electronic conductivity in template-synthesized polyheterocyclic fibrils. 1. Supermolecular effects. Chem Mater 3:960–967

    CAS  Google Scholar 

  • Cai Z, Martin CR (1989) Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities. J Am Chem Soc 111:4138–4139

    CAS  Google Scholar 

  • Caruso F (2000) Hollow capsule processing through colloidal templating and self-assembly. Chem Eur J 6:413–419

    CAS  Google Scholar 

  • Chen C, Liu Y, Wu C, Yeh C, Su M, Wu Y (2005) Preparation of fluorescent silica nanotubes and their application in gene delivery. Adv Mater 17:404–407

    CAS  Google Scholar 

  • Chen J, Yoshida M, Maekawa Y, Tsubokawa N (2001) Temperature-switchable vapor sensor materials based on N-isopropylacrylamide and calcium chloride. Polymer 42:9361–9365

    CAS  Google Scholar 

  • Cui Y, Tao C, Tian Y, He Q, Li J (2006) Synthesis of PNIPAM-co-MBAA copolymer nanotubes with composite control. Langmuir 22:8205–8208

    CAS  Google Scholar 

  • Cui Y, Tao C, Zheng S, He Q, Ai S, Li J (2005) Synthesis of thermosensitive PNIPAM-co-MBAA nanotubes by atom transfer radical polymerization within a porous membrane. Macromol Rapid Commun 26:1552–1556

    CAS  Google Scholar 

  • Cunliffe D, Smart CA, Tsibouklis J, Young S, Alexander C, Vulfson EN (2000) Bacterial adsorption to thermoresponsive polymer surfaces. Biotechnol Lett 22:141–145

    CAS  Google Scholar 

  • Decher G (1997) Fuzzy nanoassemblies: oward layered polymeric multicomposites. Science 277:1232–1237

    CAS  Google Scholar 

  • Djuristic AB, Fritz T, Leo K (2000) Modeling the optical constants of organic thin films: application to 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA). Opt Commun 183:123–132

    Google Scholar 

  • Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed 37:2202–2205

    CAS  Google Scholar 

  • Duan L, He Q, Wang K, Yan X, Cui Y, Möhwald H, Li J (2007a) Adenosine triphosphate biosynthesis catalyzed by FoF1 atp synthase assembled in polymer microcapsules. Angew Chem Int Ed 46:6996–7000

    CAS  Google Scholar 

  • Duan L, He Q, Yan X, Cui Y, Wang K, Li J (2007b) Hemoglobin protein hollow shells fabricated through covalent layer-by-layer technique. Biochem Biophys Res Commun 354:357–362

    CAS  Google Scholar 

  • Feng C, Zhong X, Steinhart M, Caminade AM, Majoral J, Knoll W (2007) Graded-bandgap quantum-dot-modified nanotubes: a sensitive biosensor for enhanced detection of DNA hybridization. Adv Mater 19:1933–1936

    CAS  Google Scholar 

  • Feng C, Zhong X, Steinhart M, Caminade AM, Majoral J, Knoll W (2008) Functional quantum-dot/dendrimer nanotubes for sensitive detection of DNA hybridization. Small 4:566–571

    CAS  Google Scholar 

  • Ford WE, Kamat PV (1987) Photochemistry of 3,4,9,10-perylenetetracarboxylic dianhydride dyes.3. Singlet and triplet excited-state properties of the bis(2,5-di-tert-butylphenyl)imide derivative. J Phys Chem 91:6373–6380

    CAS  Google Scholar 

  • Fu Q, Rao GVR, Basame SB, Keller DJ, Artyushkova K, Fulghum JE, Lopez GP (2004) Reversible control of free energy and topography of nanostructured surfaces. J Am Chem Soc 126:8904–8905

    CAS  Google Scholar 

  • Gao Y, Banin U (1999) Synthesis and characterization of InAs/InP and InAs/CdSe core/shell nanocrystals. Angew Chem Int Ed 38:3692–3694

    Google Scholar 

  • Gilcreest VP, Carroll WM, Rochev YA, Blute I, Dawson KA, Gorelov AV (2004) Thermoresponsive poly(N-isopropylacrylamide) copolymers: contact angles and surface energies of polymer films. Langmuir 20:10138–10145

    CAS  Google Scholar 

  • Gooding JJ, Wibowo R, Liu J, Yang W, Losic D, Orbons S, Mearns F, Shapter JG, Hibbert DB (2003) Protein electrochemistry using aligned carbon nanotube arrays. J Am Chem Soc 125:9006–9007

    CAS  Google Scholar 

  • Grawford GP, Steele LM, Ondris-Crawford R, Iannacchione GS, Yeager CJ, Doane JW, Finotello D (1992) Characterization of the cylindrical cavities of anopore and nuclepore membranes. J Chem Phys 96:7788–7796

    Google Scholar 

  • Hammond PT (2004) Form and function in multilayer assembly: new applications at the nanoscale. Adv Mater 16:1271–1293

    CAS  Google Scholar 

  • Harmon ME, Kuckling D, Frank CW (2003) Photo-cross-linkable PNIPAAm copolymers. 4. Effects of copolymerization and cross-linking on the volume-phase transition in constrained hydrogel layers. Langmuir 19:10947–10956

    CAS  Google Scholar 

  • He Q, Cui Y, Ai S, Tian Y, Li J (2009) Self-assembly composite nanotubes and their applications. Curr Opin Colliod In 14:115–125

    CAS  Google Scholar 

  • He Q, Song W, Möhwald H, Li J (2008a) Hydrothermal-induced structure transformation of polyelectrolyte multilayers: from nanotubes to capsules. Langmuir 24: 5508–5513

    CAS  Google Scholar 

  • He Q, Tian Y, Cui Y, Möhwald H, Li J (2008b) Layer-by-layer assembly of magnetic polypeptide nanotubes as a DNA carrier. J Mater Chem 18:748–754

    CAS  Google Scholar 

  • He Q, Zhang Y, Lu G, Miller R, Möhwald H, Li J (2008c) Dynamic adsorption and characterization of phospholipid and mixed phospholipid/protein layers at liquid/liquid interfaces. Adv Colloid Interface Sci 140:67–76

    CAS  Google Scholar 

  • Hench LL, West JK (1990) The sol-gel process. Chem Rev 90:33–72

    CAS  Google Scholar 

  • Hillebrenner H, Buyukserin F, Stewart JD, Martin CR (2006) Template synthesized nanotubes for biomedical delivery applications. Nanomedicine 1:39–50

    CAS  Google Scholar 

  • Hou S, Wang J, Martin CR (2005a) Template-synthesized DNA nanotubes. J Am Chem Soc 127:8586–8587

    CAS  Google Scholar 

  • Hou S, Wang J, Martin CR (2005b) Template-synthesized protein nanotubes. Nano Lett 5:231–234

    CAS  Google Scholar 

  • Hulteen JC, Martin CR (1997) A general template-based method for the preparation of nanomaterials. J Mater Chem 7:1075–1087

    CAS  Google Scholar 

  • Ichinose I, Senzu H, Kunitake T (1997) A surface sol—gel process of TiO2 and other metal oxide films with molecular precision. Chem Mater 9:1296–1298

    CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    CAS  Google Scholar 

  • Jiang Y, Yan D, Gao X, Han C, Jin X, Li L (2003) Lamellar branching of poly(bisphenol A-co-decane) spherulites at different temperatures studied by high-temperature AFM. Macromolecules 36:3652–3655

    CAS  Google Scholar 

  • Jirage KB, Hulteen JC, Martin CR (1997) Nanotubule-based molecular-filtration membranes. Science 278:655–658

    CAS  Google Scholar 

  • Johnston APR, Mitomo H, Read ES, Caruso F (2006) Compositional and structural engineering of DNA multilayer films. Langmuir 22:3251–3258

    CAS  Google Scholar 

  • Johnston APR, Read ES, Caruso F (2005) DNA multilayer films on planar and colloidal supports: sequential assembly of like-charged polyelectrolytes. Nano Lett 5:953–956

    CAS  Google Scholar 

  • Kim DH, Karan P, Göring P, Leclaire J, Caminade AM, Majoral JP, Gösele U, Steinhart M, Knoll W (2005) Formation of dendrimer nanotubes by layer-by-layer deposition. Small 1:99–102

    CAS  Google Scholar 

  • Kohli P, Blanchard GJ (2000) Applying polymer chemistry to interfaces: layer-by-layer and spontaneous growth of covalently bound multilayers. Langmuir 16:4655–4661

    CAS  Google Scholar 

  • Kong H, Li W, Gao C, Yan D, Jin Y, Walton DRM, Kroto HW (2004) Poly(N-isopropylacrylamide)-coated carbon nanotubes: temperature-sensitive molecular nano-hybrids in water. Macromolecules 37:6683–6686

    CAS  Google Scholar 

  • Kost J, Langer R (2001) Responsive polymeric delivery systems. Adv Drug Delivery Res 46:125–148

    CAS  Google Scholar 

  • Kovtyukhova NI, Buzaneva EV, Waraksa CC, Martin B, Mallouk TE (2000) Surface sol—gel synthesis of ultrathin semiconductor films. Chem Mater 12:383–389

    CAS  Google Scholar 

  • Kovtyukhova NI, Mallouk TE, Mayer TS (2003) Template surface sol—gel synthesis of SiO2 nanotubes and SiO2-insulated metal nanowires. Adv Mater 15:780–785

    CAS  Google Scholar 

  • Kuckling D, Adler HJP, Arndt KF, Ling L, Habicher WD (2000) Temperature and pH dependent solubility of novel poly(N-isopropylacrylamide) copolymers. Marcomol Chem Phys 201:273–280

    CAS  Google Scholar 

  • Lakshmi BB, Dorhout PK, Martin CR (1997a) Sol-gel template synthesis of semiconductor nanostructures. Chem Mater 9:857–862

    CAS  Google Scholar 

  • Lakshmi BB, Patrissi CJ, Martin CR (1997b) Sol—gel template synthesis of semiconductor oxide micro-and nanostructures. Chem Mater 9:2544–2550

    CAS  Google Scholar 

  • Lee AB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ (2004) Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5:877–882

    CAS  Google Scholar 

  • Lee DY, Nolte AJ, Kunz AL, Rubner MF, Cohen RE (2006) pH-Induced hysteretic gating of track-etched polycarbonate membranes: swelling/deswelling behavior of polyelectrolyte multilayers in confined geometry. J Am Chem Soc 128:8521–8529

    CAS  Google Scholar 

  • Lee SB, Martin CR (2001) Controlling the transport properties of gold nanotubule membranes using chemisorbed thiols. Chem Mater 13:3236–3244

    CAS  Google Scholar 

  • Lee SB, Mitchell DT, Trofin L, Nevanen TK, Soederlund H, Martin CR (2002) Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science 296:2198–2200

    CAS  Google Scholar 

  • Lei J, Menon VP, Martin CR (1992) Chemical preparation of conductive polypyrrole-polytetrafluoroethene composites. Polym Adv Technol 4:124–132

    Google Scholar 

  • Li J, Möhwald H An Z, Lu G (2005) Molecular assembly of biomimetic microcapsules. Soft Matter 1:259–264

    Google Scholar 

  • Li J, Zhang Y, Yan L (2001) Multilayer formation on a curved drop surface. Angew Chem Int Ed 40:891–894

    CAS  Google Scholar 

  • Liang W, Martin CR (1990) Template-synthesized polyacetylene fibrils show enhanced supermolecular order. J Am Chem Soc 112:9666–9668

    CAS  Google Scholar 

  • Liang ZJ, Susha AS, Yu AM, Caruso F (2003) Nanotubes prepared by layer-by-layer coating of porous membrane template. Adv Mater 15:1849–1853

    CAS  Google Scholar 

  • Livage J, Henry M, Sanchez C (1988) Sol—gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341

    CAS  Google Scholar 

  • Lu G, Ai S, Li J (2005) Layer-by-layer assembly of human serum albumin and phospholipid nanotubes based on a template. Langmuir 21:1679–1682

    CAS  Google Scholar 

  • Lu G, Komatsu T, Tsuchida E (2007) Artificial hemoprotein nanotubes. Chem Commun 28:2980–2982

    Google Scholar 

  • Lynn DM (2007) Peeling back the layers: controlled erosion and triggered disassembly of multilayered polyelectrolyte thin films. Adv Mater 19:4118–4130

    CAS  Google Scholar 

  • Martin CR (1991) Template synthesis of polymeric and metal microtubules. Adv Mater 3:457–459

    CAS  Google Scholar 

  • Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266: 1961–1966

    CAS  Google Scholar 

  • Martin CR, Parthasarathy R, Menon V (1993) Template synthesis of electronically conductive polymers: a new route for achieving higher electronic conductivities. Synth Met 55:1165–1170

    CAS  Google Scholar 

  • Mitchell DT, Lee SB, Trofin L, Li N, Nevanen TK, Söderlund H, Martin CR (2002) Smart nanotubes for bioseparations and biocatalysis. J Am Chem Soc 124:11864–11865

    CAS  Google Scholar 

  • Nishizawa M, Menon VP, Martin CR (1995) Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 268:700–702

    CAS  Google Scholar 

  • Parthasarathy R, Martin CR (1994a) Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization. Nature 369:298–301

    CAS  Google Scholar 

  • Parthasarathy R, Martin CR (1994b) Template-synthesized polyaniline microtubules. Chem Mater 6:1627–1632

    CAS  Google Scholar 

  • Patten TE, Maytjaszewski K (1998) Atom transfer radical polymerization and the synthesis of polymeric materials. Adv Mater 12:901–915

    Google Scholar 

  • Peyratout CS, Daehne L (2004) Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers. Angew Chem Int Ed 43:3762–3783

    CAS  Google Scholar 

  • Quinn JF, Caruso F (2004) Facile tailoring of film morphology and release properties using layer-by-layer assembly of thermoresponsive materials. Langmuir 20:20–22

    CAS  Google Scholar 

  • Quinn JF, Johnston APR, Such GK, Zelikin AN, Caruso F (2007) Next generation, sequentially assembled ultrathin films: beyond electrostatics. Chem Soc Rev 36:707–718

    CAS  Google Scholar 

  • Reber N, Kuchel A, Spohr R, Wolf A, Yoshida M (2001) Transport properties of thermoresponsive ion track membranes. J Membr Sci 193:49–58

    CAS  Google Scholar 

  • Serizawa T, Nanameki K, Yamamoto K, Akashi M (2002) Thermoresponsive ultrathin hydrogels prepared by sequential chemical reactions. Macromolecules 35:2184–2189

    CAS  Google Scholar 

  • Shi D, Lian J, Wang W, Liu G, He P, Dong Z, Wang L, Ewing RC (2006) Luminescent carbon nanotubes by surface functionalization. Adv Mater 18:189–193

    CAS  Google Scholar 

  • Steinhart M (2008) Supramolecular organization of polymeric materials in nanoporous hard templates. Adv Polym Sci 220:123–187

    CAS  Google Scholar 

  • Steinhart M, Wehrspohn RB, Gösele U, Wendorff JH (2004) Nanotubes by template wetting: a modular assembly system. Angew Chem Int Ed 43: 1334–1344

    CAS  Google Scholar 

  • Steinhart M, Wendorff JH, Greiner A, Wehrspohn RB, Nielsch K, Schilling J, Choi J, Gösele U (2002) Polymer nanotubes by wetting of ordered porous templates. Science 296:1997

    CAS  Google Scholar 

  • Stockto WB, Rubner MF (1997) Molecular-level processing of conjugated polymers. 4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules 30: 2717–2725

    Google Scholar 

  • Such GK, Quinn JF, Quinn A, Tjipto E, Caruso F (2006) Assembly of ultrathin polymer multilayer films by click chemistry. J Am Chem Soc 128:9318–9319

    CAS  Google Scholar 

  • Sukhishvili SA, Granick S (2000) Layered, erasable, ultrathin polymer films. J Am Chem Soc 122:9550–9551

    CAS  Google Scholar 

  • Sukhishvili SA, Granick S (2002) Layered, erasable polymer multilayers formed by hydrogen-bonded sequential self-assembly. Macromolecules 35:301–310

    CAS  Google Scholar 

  • Sun T, Wang G, Feng L, Liu B, Ma Y, Liang L, Zhu D (2004) Reversible switching between superhydrophilicity and superhydrophobicity. Angew Chem Int Ed 43:357–360

    CAS  Google Scholar 

  • Tian Y, He Q, Cui Y, Li J (2006a) Fabrication of protein nanotubes based on layer-by-layer assembly. Biomacromolecules 7:2539–2542

    CAS  Google Scholar 

  • Tian Y, He Q, Cui Y, Tao C, Li J (2006b) Assembly of nanotubes of poly(4-vinylpyridine) and poly(acrylic acid) through hydrogen bonding. Chem Eur J 12:4808–4812

    CAS  Google Scholar 

  • Tian Y, He Q, Li J (2006c) Fabrication of fluorescent nanotubes based on layer-by-layer assembly via covalent bond. Langmuir 22:360–362

    CAS  Google Scholar 

  • Tian Y, He Q, Tao C, Cui Y, Ai S, Li J (2006d) Fabrication of polyethyleneimine and poly(styrene-alt-maleic anhydride) nanotubes through covalent bond. J Nanosci Nanotechnol 6:2072–2076

    CAS  Google Scholar 

  • Van Dyke LS, Martin CR (1990) Electrochemical investigations of electronically conductive polymers. 4. Controlling the supermolecular structure allows charge transport rates to be enhanced. Langmuir 6:1118–1123

    Google Scholar 

  • Wang H, Zhou W, Yin X, Zhuang Z, Yang H, Wang X (2006) Template synthesized molecularly imprinted polymer nanotube membranes for chemical separations. J Am Chem Soc 128: 15954–15955

    CAS  Google Scholar 

  • Wang K, He Q, Cui Y, Yan X, Qi W, Li J (2007) Encapsulated photosensitive drugs by biodegradable microcapsules to incapacitate cancer cells. J Mater Chem 17:4018–4021

    CAS  Google Scholar 

  • Wang L, Wang Z, Zhang X, Shen J, Chi L, Fuchs H (1997) A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acry1ic acid) based on hydrogen bonding. Macromol Rapid Commun 18:509–514

    CAS  Google Scholar 

  • Wang Y, Angelatos AS, Caruso F (2008) Template synthesis of nanostructured materials via layer-by-layer assembly. Chem Mater 20:848–858

    CAS  Google Scholar 

  • Wang Z, Chumanov G (2003) WO3 sol—gel modified Ag nanoparticles arrays for electrochemical modulation of surface plasmon resonance. Adv Mater 15:1285–1289

    CAS  Google Scholar 

  • Williams KA, Veenhuizen PT, Torre BG, Eritja R, Dekker C (2002) Nanotechnology: carbon nanotubes with DNA recognition. Nature 420:761

    CAS  Google Scholar 

  • Willner I, Katz E (2000) Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew Chem Int Ed 39:1180–1218

    Google Scholar 

  • Willner I, Patolsky F, Wasserman J (2001) Photoelectrochemistry with controlled DNA-cross-linked CdS nanoparticle arrays. Angew Chem Int Ed 40:1861–1864

    CAS  Google Scholar 

  • Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975

    CAS  Google Scholar 

  • Yang S, Rubner MF (2002) Micropatterning of polymer thin films with pH-sensitive and cross-linkable hydrogen-bonded polyelectrolyte multilayers. J Am Chem Soc 124: 2100–2101

    CAS  Google Scholar 

  • Yang Y, He Q, Duan L, Cui Y, Li J (2007) Assembled alginate/chitosan nanotubes for biological application. Biomaterials 28: 3083–3090

    CAS  Google Scholar 

  • Yu A, Liang Z, Caruso F (2005) Enzyme multilayer-modified porous membranes as biocatalysts. Chem Mater 17:171–175

    CAS  Google Scholar 

  • Zelenski CM, Dorhout PK (1998) Template synthesis of near-monodisperse microscale nanofibers and nanotubules of MoS2. J Am Chem Soc 120:734–742

    CAS  Google Scholar 

  • Zelikin AN, Li Q, Caruso F (2006) Degradable polyelectrolyte capsules filled with oligonucleotide sequences. Angew Chem Int Ed 45:7743–7745

    CAS  Google Scholar 

  • Zheng S, Tao C, He Q, Zhu H, Li J (2004) Self-assembly and characterization of polypyrrole and polyallylamine multilayer films and hollow shells. Chem Mater 16: 3677–3681

    CAS  Google Scholar 

  • Zhi L, Wu J, Li J, Stepputat M, Kolb U, Muellen K (2005) Diels-alder reactions of tetraphenylcyclopentadienones in nanochannels: fabrication of nanotubes from hyperbranched polyphenylenes. Adv Mater 17:1492–1496

    CAS  Google Scholar 

  • Zhou Y, Shimizu T (2008) Lipid nanotubes: a unique template to create diverse one-dimensional nanostructures. Chem Mater 20:625–633

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cui, Y., He, Q., Li, J. (2010). Nanoporous Template Synthesized Nanotubes for Bio-related Applications. In: Li, J. (eds) Nanostructured Biomaterials. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05012-1_5

Download citation

Publish with us

Policies and ethics