Skip to main content

Designing Reliable Digital Molecular Electronic Circuits

  • Conference paper
  • 856 Accesses

Abstract

Reliability is expected to be a critical challenge in designing future molecular electronic circuits. Using a compact model that captures the essential physics of the device, the effect on digital gate functionality of variations in the device parameters, as well as the improvements afforded by a TMR majority gate structure are quantified. It is shown that the improvement is substantial, showing the potential viability of such technologies in future massively integrated systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, J., Reed, M.A., Rawlett, A., Tour, J.: Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999)

    Article  Google Scholar 

  2. Collier, C.P., et al: Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999)

    Article  Google Scholar 

  3. Lei, C., Pamunuwa, D., Bailey, S., Lambert, C.: Application of molecular electronics devices in digital circuit design. In: Social Informatics and Telecommunications Engineering (Proc. Nano-Net), Boston, Massachusetts, USA. LNCS. Springer, Heidelberg (2008)

    Google Scholar 

  4. Nikolic, K., Sadek, A., Forshaw, M.: Fault-tolerant techniques for nanocomputers. Nanotechnology 13, 357–362 (2002)

    Article  Google Scholar 

  5. Sadek, A.S., Nikolic, K., Forshaw, M.: Parallel information and computation with restitution for noise-tolerant nanoscale logic networks. Nanotechnology 15, 192–210 (2004)

    Article  Google Scholar 

  6. Lei, C., Pamunuwa, D., Bailey, S., Lambert, C.: Molecular electronics device modeling for system design. In: IEEE Conf. Nanotechnology (IEEE-NANO), Hong Kong (2007)

    Google Scholar 

  7. Chen, Y., et al: Nanoscale molecular-switch crossbar circuits. Nanotechnology 14, 462–468 (2003)

    Article  Google Scholar 

  8. Lei, C., Pamunuwa, D., Bailey, S., Lambert, C.: Design of robust molecular electronic circuits. In: International Symposium on Circuits and Systems (ISCAS), Taiwan. IEEE, Los Alamitos (2009)

    Google Scholar 

  9. Landauer, R.: Can a length of perfect conductor have a resistance. Phys. Lett. 85A, 91–93 (1981)

    Article  Google Scholar 

  10. Lambert, C.: Localization with phase correlations and the effect of periodic cycles. J. Phys. C17, 2401 (1984)

    Google Scholar 

  11. Lambert, C.: Anomalies In The Transport Properties Of A Disordered Solid. Phys. Rev. B 29, 1091 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Lei, C., Pamunuwa, D., Bailey, S., Lambert, C. (2009). Designing Reliable Digital Molecular Electronic Circuits. In: Schmid, A., Goel, S., Wang, W., Beiu, V., Carrara, S. (eds) Nano-Net. NanoNet 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04850-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04850-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04849-4

  • Online ISBN: 978-3-642-04850-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics