Skip to main content

Few-Atom Silver Clusters as Fluorescent Reporters

  • Chapter
  • First Online:
Book cover Advanced Fluorescence Reporters in Chemistry and Biology II

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 9))

Abstract

Silver clusters, composed of only a few silver atoms, have remarkable optical properties based on electronic transitions between quantized energy levels. They have large absorption coefficients and fluorescence quantum yields, in common with conventional fluorescent markers. But importantly, silver clusters have an attractive set of features, including subnanometer size, nontoxicity and photostability, which makes them competitive as fluorescent markers compared with organic dye molecules and semiconductor quantum dots. In this chapter, we review the synthesis and properties of fluorescent silver clusters, and their application as bio-labels and molecular sensors. Silver clusters may have a bright future as luminescent probes for labeling and sensing applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun T, Seff K (1994) Silver clusters and chemistry in zeolites. Chem Rev 94:857–870

    Article  CAS  Google Scholar 

  2. Ozin GA, Hugues F, Mattar SM, McIntosh DF (1983) Low nuclearity silver clusters in faujasite-type zeolites: optical spectroscopy, photochemistry and relationship to the photodimerization of alkanes. J Phys Chem 87:3445–3450

    Article  CAS  Google Scholar 

  3. De Cremer G, Antoku Y, Roeffaers MBJ, Sliwa M, Van Noyen J, Smout S, Hofkens J, De Vos DE, Sels BF, Vosch T (2008) Photoactivation of silver-exchanged zeolite A. Angew Chem Int Ed 47:2813–2816

    Article  Google Scholar 

  4. Klotzbücher WE, Ozin GA (1980) Optical spectra of hafnium, tungsten, rhenium and ruthenium atoms and other heavy transition-metal atoms and small clusters (Zr1, 2, Pd1, 2, Au1, 2, 3) in noble-gas matrixes. Inorg Chem 19:3767–3776

    Article  Google Scholar 

  5. König L, Rabin I, Schulze W, Ertl G (1996) Chemiluminescence in the agglomeration of metal clusters. Science 274:1353–1355

    Article  Google Scholar 

  6. de Lamaestre RE, Bea H, Bernas H, Belloni J, Marignier JL (2007) Irradiation-induced Ag nanocluster nucleation in silicate glasses: analogy with photography. Phys Rev B 76:205431

    Article  Google Scholar 

  7. Eichelbaum M, Rademann K, Hoell A, Tatchev DM, Weigel W, Stosser R, Pacchioni G (2008) Photoluminescence of atomic gold and silver particles in soda-lime silicate glasses. Nanotechnology 19:135701

    Article  Google Scholar 

  8. Bilan ON, Tyul'nin VA, Cherenda NG, Shendrik AV, Yudin DM (1980) Radiation paramagnetic centers and luminescence centers in silver-doped quartz glasses. J Appl Spectrosc 33:717–720

    Article  Google Scholar 

  9. Peyser LA, Vinson AE, Bartko AP, Dickson RM (2001) Photoactivated fluorescence from individual silver nanoclusters. Science 291:103–106

    Article  CAS  Google Scholar 

  10. Lee T-H, Gonzalez JI, Dickson RM (2002) Strongly enhanced field-dependent single-molecule electroluminescence. Proc Natl Acad Sci USA 99:10272–10275

    Article  CAS  Google Scholar 

  11. Peyser LA, Lee T-H, Dickson RM (2002) Mechanism of Ag n nanocluster photoproduction from silver oxide films. J Phys Chem B 106:7725–7728

    Article  CAS  Google Scholar 

  12. Henglein A, Tausch-Treml R (1981) Optical absorption and catalytic activity of subcolloidal and colloidal silver in aqueous solution: a pulse radiolysis study. J Colloid Interface Sci 80:84–93

    Article  CAS  Google Scholar 

  13. Ershov BG, Henglein A (1998) Time-resolved investigation of early processes in the reduction of Ag+ on polyacrylate in aqueous solution. J Phys Chem B 102:10667–10671

    Article  CAS  Google Scholar 

  14. Linnert T, Mulvaney P, Henglein A, Weller H (1990) Long-lived nonmetallic silver clusters in aqueous-solution – preparation and photolysis. J Am Chem Soc 112:4657–4664

    Article  CAS  Google Scholar 

  15. Henglein A (1989) Small-particle research – physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873

    Article  CAS  Google Scholar 

  16. Zheng J, Dickson RM (2002) Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J Am Chem Soc 124:13982–13983

    Article  CAS  Google Scholar 

  17. Xu H, Suslick KS (2010) Water-soluble fluorescent silver nanoclusters. Adv Mater 22:1078–1082

    Google Scholar 

  18. de Souza N (2007) All that glitters but does not blink. Nat Methods 4:540–540

    Article  Google Scholar 

  19. Vosch T, Antoku Y, Hsiang J-C, Richards CI, Gonzalez JI, Dickson RM (2007) Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores. Proc Natl Acad Sci 104:12616–12621

    Article  CAS  Google Scholar 

  20. Díez I, Pusa M, Kulmala S, Jiang H, Walther A, Goldmann AS, Müller AHE, Ikkala O, Ras RHA (2009) Color tunability and electrochemiluminescence of silver nanoclusters. Angew Chem Int Ed 48:2122–2125

    Article  Google Scholar 

  21. Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College, Philadelphia

    Google Scholar 

  22. Mohamed MB, Volkov V, Link S, El-Sayed MA (2000) The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem Phys Lett 317:517–523

    Article  CAS  Google Scholar 

  23. Boyd GT, Yu ZH, Shen YR (1986) Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys Rev B 33:7923

    Article  CAS  Google Scholar 

  24. Geddes CD, Parfenov A, Gryczynski I, Lakowicz JR (2003) Luminescent blinking from silver nanostructures. J Phys Chem B 107:9989–9993

    Article  CAS  Google Scholar 

  25. Zheng J, Nicovich PR, Dickson RM (2007) Highly fluorescent noble-metal quantum dots. Annu Rev Phys Chem 58:409–431

    Article  CAS  Google Scholar 

  26. Shibu ES, Muhammed MAH, Tsukuda T, Pradeep T (2008) Ligand exchange of Au25SG18 leading to functionalized gold clusters: spectroscopy, kinetics, and luminescence. J Phys Chem C 112:12168–12176

    Article  CAS  Google Scholar 

  27. Richards CI, Hsiang J-C, Senapati D, Patel S, Yu J, Vosch T, Dickson RM (2009) Optically modulated fluorophores for selective fluorescence signal recovery. J Am Chem Soc 131:4619–4621

    Article  CAS  Google Scholar 

  28. Walter M, Akola J, Lopez-Acevedo O, Jadzinsky PD, Calero G, Ackerson CJ, Whetten RL, Grönbeck H, Häkkinen H (2008) A unified view of ligand-protected gold clusters as superatom complexes. Proc Natl Acad Sci USA 105:9157–9162

    Article  CAS  Google Scholar 

  29. Shang L, Dong S (2008) Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem Commun 9:1088–1090

    Article  Google Scholar 

  30. Shen Z, Duan H, Frey H (2007) Water-soluble fluorescent ag nanoclusters obtained from multiarm star poly(acrylic acid) as molecular hydrogel templates. Adv Mater 19:349–352

    Article  CAS  Google Scholar 

  31. Makarava N, Parfenov A, Baskakov IV (2005) Water-soluble hybrid nanoclusters with extra bright and photostable emissions: a new tool for biological imaging. Biophys J 89:572–580

    Article  CAS  Google Scholar 

  32. Petty JT, Zheng J, Hud NV, Dickson RM (2004) DNA-templated Ag nanocluster formation. J Am Chem Soc 126:5207–5212

    Article  CAS  Google Scholar 

  33. Stoltenberg RM, Woolley AT (2004) DNA-templated nanowire fabrication. Biomed Microdevices 6:105–111

    Article  CAS  Google Scholar 

  34. Wei G, Wang L, Liu Z, Song Y, Sun L, Yang T, Li Z (2005) DNA-network-templated self-assembly of silver nanoparticles and their application in surface-enhanced raman scattering. J Phys Chem B 109:23941–23947

    Article  CAS  Google Scholar 

  35. Kumar A, Ramakrishnan V, Gonnade R, Ganesh KN, Sastry M (2002) Electrostatically entrapped DNA molecules in lipid thin films as templates for the in situ growth of silver nanoparticles. Nanotechnology 13:597

    Article  CAS  Google Scholar 

  36. Sun L, Wei G, Song Y, Liu Z, Wang L, Li Z (2006) Fabrication of silver nanoparticles ring templated by plasmid DNA. Appl Surf Sci 252:4969–4974

    Article  CAS  Google Scholar 

  37. Wirges Christian T, Timper J, Fischler M, Sologubenko Alla S, Mayer J, Simon U, Carell T (2009) Controlled nucleation of DNA metallization. Angew Chem Int Ed 48:219–223

    Article  CAS  Google Scholar 

  38. Yang W, Shen C, Ji Q, An H, Wang J, Liu Q, Zhang Z (2009) Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 20:085102

    Article  Google Scholar 

  39. Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391:775–778

    Article  CAS  Google Scholar 

  40. Izatt RM, Christensen JJ, Rytting JH (1971) Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides and nucleotides. Chem Rev 71:439–481

    Article  CAS  Google Scholar 

  41. Eichhorn GL (1973) Inorganic biochemistry. Elsevier Scientific Pub. Co., Amsterdam

    Google Scholar 

  42. Marzilli LG (1977) Metal–ion interactions with nucleic acids and nucleic acid derivatives. In: Stephen JL (ed) Progress in inorganic chemistry. Wiley, Hoboken, NJ

    Google Scholar 

  43. Yamane T, Davidson N (1962) On the complexing of deoxyribonucleic acid by silver(I). Biochim Biophys Acta (BBA) 55:609–621, Specialized section on nucleic acids and related subjects

    Article  CAS  Google Scholar 

  44. Luk KFS, Maki AH, Hoover RJ (1975) Studies of heavy metal binding with polynucleotides using optical detection of magnetic resonance. Silver(I) binding. J Am Chem Soc 97:1241–1242

    Article  CAS  Google Scholar 

  45. Gwinn EG, O'Neill P, Guerrero AJ, Bouwmeester D, Fygenson DK (2008) Sequence-dependent fluorescence of DNA-hosted silver nanoclusters. Adv Mater 20:279–283

    Article  CAS  Google Scholar 

  46. Richards CI, Choi S, Hsiang J-C, Antoku Y, Vosch T, Bongiorno A, Tzeng Y-L, Dickson RM (2008) Oligonucleotide-stabilized Ag nanocluster fluorophores. J Am Chem Soc 130:5038–5039

    Article  CAS  Google Scholar 

  47. Patel SA, Richards CI, Hsiang J-C, Dickson RM (2008) Water-soluble Ag nanoclusters exhibit strong two-photon-induced fluorescence. J Am Chem Soc 130:11602–11603

    Article  CAS  Google Scholar 

  48. Ritchie CM, Johnsen KR, Kiser JR, Antoku Y, Dickson RM, Petty JT (2007) Ag nanocluster formation using a cytosine oligonucleotide template. J Phys Chem C 111:175–181

    Article  CAS  Google Scholar 

  49. Sengupta B, Ritchie CM, Buckman JG, Johnsen KR, Goodwin PM, Petty JT (2008) Base-directed formation of fluorescent silver clusters. J Phys Chem C 112:18776–18782

    CAS  Google Scholar 

  50. Yu J, Choi S, Richards CI, Antoku Y, Dickson RM (2008) Live cell surface labeling with fluorescent Ag nanocluster conjugates. Photochem Photobiol 84:1435–1439

    Article  CAS  Google Scholar 

  51. Dattagupta N, Crothers DM (1981) Solution structural studies of the Ag(I)–DNA complex. Nucl Acids Res 9:2971–2985

    Article  CAS  Google Scholar 

  52. Arakawa H, Neault JF, Tajmir-Riahi HA (2001) Silver(I) complexes with DNA and RNA studied by Fourier transform infrared spectroscopy and capillary electrophoresis. Biophys J 81:1580–1587

    Article  CAS  Google Scholar 

  53. O'Neill PR, Velazquez LR, Dunn DG, Gwinn EG, Fygenson DK (2009) Hairpins with poly-C loops stabilize four types of fluorescent Ag n :DNA. J Phys Chem C 113:4229–4233

    Article  Google Scholar 

  54. Kerényi L, Gallyas F (1972) A highly sensitive method for demonstrating proteins in electrophoretic, immunoelectrophoretic and immunodiffusion preparations. Clin Chim Acta 38:465–467

    Article  Google Scholar 

  55. Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1:169–172

    Article  CAS  Google Scholar 

  56. Li H, Michael Siu KW, Guevremont R, Le Blanc JCY (1997) Complexes of silver(I) with peptides and proteins as produced in electrospray mass spectrometry. J Am Soc Mass Spectrom 8:781–792

    Article  CAS  Google Scholar 

  57. Yu J, Patel Sandeep A, Dickson RM (2007) In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters. Angew Chem Int Ed 46:2028–2030

    Article  CAS  Google Scholar 

  58. Narayanan SS, Pal SK (2008) Structural and functional characterization of luminescent silver–protein nanobioconjugates. J Phys Chem C 112:4874–4879

    Article  CAS  Google Scholar 

  59. Ayres JG, Crocker JG, Skilbeck NQ (1988) Differentiation of malignant from normal and reactive mesothelial cells by the argyrophil technique for nucleolar organiser region associated proteins. Thorax 43:366–370

    Article  CAS  Google Scholar 

  60. Giuffrè G, Mormandi F, Barresi V, Bordi C, Tuccari G, Barresi G (2006) Quantity of AgNOR in gastric endocrine carcinoid tumours as a potential prognostic tool. Eur J Histochem 50:45–50

    Google Scholar 

  61. Peyser-Capadona L, Zheng J, González JI, Lee T-H, Patel SA, Dickson RM (2005) Nanoparticle-free single molecule anti-stokes Raman spectroscopy. Phys Rev Lett 94:058301

    Article  Google Scholar 

  62. Andersson L-O (1972) Study of some silver-thiol complexes and polymers: stoichiometry and optical effects. J Polym Sci Part A 1 Polym Chem 10:1963–1973

    Article  Google Scholar 

  63. Srivastava M, Fleming PJ, Pollard HB, Burns AL (1989) Cloning and sequencing of the human nucleolin cDNA. FEBS Lett 250:99–105

    Article  CAS  Google Scholar 

  64. Lesniak W, Bielinska AU, Sun K, Janczak KW, Shi X, Baker JR, Balogh LP (2005) Silver/dendrimer nanocomposites as biomarkers: fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett 5:2123–2130

    Article  CAS  Google Scholar 

  65. Varnavski O, Ispasoiu RG, Balogh L, Tomalia D, Goodson T III (2001) Ultrafast time-resolved photoluminescence from novel metal–dendrimer nanocomposites. J Chem Phys 114:1962–1965

    Article  CAS  Google Scholar 

  66. Zhang J, Xu S, Kumacheva E (2005) Photogeneration of fluorescent silver nanoclusters in polymer microgels. Adv Mater 17:2336–2340

    Article  CAS  Google Scholar 

  67. Ledo A, Martínez F, López-Quintela MA, Rivas J (2007) Synthesis of Ag clusters in microemulsions: a time-resolved UV–vis and fluorescence spectroscopy study. Phys B Condens Matter 398:273–277

    Article  CAS  Google Scholar 

  68. Ledo-Suárez A, Rivas J, Rodríguez-Abreu Carlos F, Rodríguez María J, Pastor E, Hernández-Creus A, Oseroff Saul B, López-Quintela MA (2007) Facile synthesis of stable subnanosized silver clusters in microemulsions. Angew Chem Int Ed 46:8823–8827

    Article  Google Scholar 

  69. Yu J, Choi S, Dickson RM (2009) Shuttle-based fluorogenic silver-cluster biolabels. Angew Chem Int Ed 48:318–320

    Article  CAS  Google Scholar 

  70. Shang L, Dong SJ (2009) Sensitive detection of cysteine based on fluorescent silver clusters. Biosens Bioelectron 24:1569–1573

    Article  CAS  Google Scholar 

  71. Shang L, Dong SJ (2008) Silver nanocluster-based fluorescent sensors for sensitive detection of Cu(II). J Mater Chem 18:4636–4640

    Article  CAS  Google Scholar 

  72. Guo W, Yuan J, Wang E (2009) Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion. Chem Commun 23:3395–3397

    Article  Google Scholar 

  73. Lan G-Y, Huang C-C, Chang H-T (2010) Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chem Commun 46:1257–1259

    Google Scholar 

  74. Guo W, Yuan J, Dong Q, Wang E (2010) Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification. J Am Chem Soc 132:932–934

    Article  CAS  Google Scholar 

  75. Patel SA, Cozzuol M, Hales JM, Richards CI, Sartin M, Hsiang JC, Vosch T, Perry JW, Dickson RM (2009) Electron transfer-induced blinking in Ag nanodot fluorescence. J Phys Chem C 113:20264–20270

    Article  CAS  Google Scholar 

  76. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  77. Díez I, Hahn H, Ikkala O, Börner HG, Ras RHA (2010) Controlled growth of silver nanoparticle arrays guided by a self-assembled polymer-peptide conjugate. Soft Matter 6:3160–3162

    Google Scholar 

  78. Muhammed MAH, Pradeep T (2010) Luminescent quantum clusters of gold as bio-labels. In: AP Demchenko (ed) Advanced Fluorescence Reporters in Chemistry and Biology II, Springer Ser Fluoresc 9:333–353

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin H. A. Ras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Díez, I., Ras, R.H.A. (2010). Few-Atom Silver Clusters as Fluorescent Reporters. In: Demchenko, A. (eds) Advanced Fluorescence Reporters in Chemistry and Biology II. Springer Series on Fluorescence, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04701-5_10

Download citation

Publish with us

Policies and ethics