Skip to main content

Nanocrystals and Nanoparticles Versus Molecular Fluorescent Labels as Reporters for Bioanalysis and the Life Sciences: A Critical Comparison

  • Chapter
  • First Online:
Book cover Advanced Fluorescence Reporters in Chemistry and Biology II

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 9))

Abstract

At the core of photoluminescence techniques are suitable fluorescent labels and reporters, the spectroscopic properties of which control the limit of detection, the dynamic range, and the potential for multiplexing. Many applications including recent developments in intracellular labeling rely on well established molecular chromophores such as small organic dyes or fluorescent proteins. However, one of the most exciting – but also controversial – advances in reporter technology, the emerging development and application of luminescent nanoparticles with unique optical properties, yet complicated surface chemistry paves new roads for fluorescence imaging and sensing as well as for in vitro and in vivo labeling. Here, we compare and evaluate the differences in physico-chemical properties of common fluorophores, focusing on traditional organic dyes and luminescent nanocrystals with size-dependent features. The ultimate goal is to provide a better understanding of the advantages and limitations of both classes of chromophores, facilitate fluorophore choice for users of fluorescence techniques, and address future challenges in the rational design and manipulation of nanoparticulate labels and probes.

Keywords

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775

    Article  CAS  Google Scholar 

  2. Lavis LD (2008) Bright ideas for chemical biology. ACS Chem Biol 3:142–155

    Article  CAS  Google Scholar 

  3. Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev 3:906–918

    Article  CAS  Google Scholar 

  4. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  5. Grabolle M, Kapusta P, Nann T, Shu X, Ziegler J, Resch-Genger U (2009) Fluorescence lifetime multiplexing with nanocrystals and organic labels. Anal Chem 81:7807–7813

    Article  CAS  Google Scholar 

  6. Sapsford KE, Berti L, Medintz IL (2006) Materials for fluorescence resonance energy transfer analysis: beyond traditional donor–acceptor combinations. Angew Chem Int Ed 45:4562–4588

    Article  CAS  Google Scholar 

  7. Chan CP (2009) Ingenious nanoprobes in bioassays. Bioanalysis 1:115–133

    Article  CAS  Google Scholar 

  8. Bissell RA, de Silva AP, Gunaratne HQN, Lynch PLM, Maguire GEM, Sandanayake KRAS (1992) Molecular fluorescent signalling with ‘Fluor-Spacer-Receptor’ systems: approaches to sensing and switching devices via supramolecular photophysics. Chem Soc Rev 21:187–195

    Article  CAS  Google Scholar 

  9. Dixon IM, Lebon E, Sutra P, Igau A (2009) Luminescent ruthenium–polypyridine complexes & phosphorus ligands: anything but a simple story. Chem Soc Rev 38:1621–1634

    Article  CAS  Google Scholar 

  10. Hemmila I, Laitala V (2005) Progress in lanthanides as luminescent probes. J Fluoresc 15:529–542

    Article  CAS  Google Scholar 

  11. Parker D, Dickins RS, Puschmann H, Crossland C, Howard JAK (2002) Being excited by lanthanide coordination complexes: aqua species, chirality, excited-state chemistry, and exchange dynamics. Chem Rev 102:1977–2010

    Article  CAS  Google Scholar 

  12. dos Santos CMG, Harte AJ, Quinn SJ, Gunnlaugsson T (2008) Recent developments in the field of supramolecular lanthanide luminescent sensors and self-assemblies. Coord Chem Rev 252:2512–2527

    Article  CAS  Google Scholar 

  13. Shaner NC, Steinchbach PA (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  CAS  Google Scholar 

  14. Li JH, Zhang JZ (2009) Optical properties and applications of hybrid semiconductor nanomaterials. Coord Chem Rev 253:3015–3041

    Article  CAS  Google Scholar 

  15. Sun YP et al (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757

    Article  CAS  Google Scholar 

  16. Warner JH, Hoshino A (2005) Water-soluble photoluminescent silicon quantum dots. Angew Chem Int Ed 44:4550–4554

    Article  CAS  Google Scholar 

  17. Prodi L, Battistini G, Dolci L, Montalti M, Zaccheroni N (2007) Luminescence of gold nanoparticles. In frontiers in surface nanophotonics, Springer series in optical sciences. Springer, Berlin, Heidelberg, pp 99–128 Available via http://dx.doi.org/10.1007/978-0-387-48951-3_5

  18. Fu H, Yao JN (2001) Size effects on the optical properties of organic nanoparticles. J Am Chem Soc 123:1434–1439

    Article  CAS  Google Scholar 

  19. Soukka T, Rantanen T, Kuningas K (2008) Photon upconversion in homogeneous fluorescence-based bioanalytical assays. Ann N Y Acad Sci 1130:188–200, Fluorescence Methods and Applications: Spectroscopy, Imaging, and Probes

    Article  CAS  Google Scholar 

  20. Qian HS, Li ZQ, Zhang Y (2008) Multicolor polystyrene nanospheres tagged with up-conversion fluorescent nanocrystals. Nanotechnology 19(255601):4

    Google Scholar 

  21. Yan JL, Estevez MC, Smith JE, Wang KM, He XX, Wang L, Tan WH (2007) Dye-doped nanoparticles for bioanalysis. Nano Today 2:44–50

    Article  Google Scholar 

  22. Swager TM (1998) The molecular wire approach to sensory signal amplification. Acc Chem Res 31:201–207

    Article  CAS  Google Scholar 

  23. Luchowski R, Matveeva EG, Gryczynski I, Terpetschnig EA, Patsenker L, Laczko G, Borejdo J, Gryczynski Z (2008) Single molecule studies of multiple-fluorophore labeled antibodies. Effect of homo-FRET on the number of photons available before photobleaching. Curr Pharm Biotechnol 9:411–420

    Article  CAS  Google Scholar 

  24. Demchenko AP (2005) Optimization of fluorescence response in the design of molecular biosensors. Anal Biochem 343:1–22

    Article  CAS  Google Scholar 

  25. Nagl S, Schaeferling M, Wolfbeis OS (2005) Fluorescence analysis in microarray technology. Microchim Acta 151:1–21

    Article  CAS  Google Scholar 

  26. Doering K, Meder G, Hinnenberger M, Woelcke J, Mayr LM, Hassiepen U (2009) A fluorescence lifetime-based assay for protease inhibitor profiling on human kallikrein 7. J Biomol Screen 14:1–9

    Article  CAS  Google Scholar 

  27. Turconi S, Bingham RP, Haupts U, Pope AJ (2001) Developments in fluorescence for lifetime-based analysis for ultra-HTS. Drug Discov Today 6:27–39

    Article  Google Scholar 

  28. Soukka T, Paukkunen J, Harma H, Lonnberg S, Lindroos H, Lovgren T (2001) Supersensitive time-resolved immunofluorometric assay of free prostate-specific antigen with nanoparticle label technology. Clin Chem 47:1269–1278

    CAS  Google Scholar 

  29. Sackett DL, Wolff J (1987) Nile red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces. Anal Biochem 167:228–234

    Article  CAS  Google Scholar 

  30. Gruber HJ, Hahn CD (2000) Anomalous fluorescence enhancement of Cy3 and Cy3.5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalently linking to IgC and noncovalent binding to avidin. Bioconjug Chem 11:696–704

    Article  CAS  Google Scholar 

  31. Soper SA, Mattingly QL (1994) Steady-state and picosecond laser fluorescence studies of nonradiative pathways in tricarbocyanine dyes: implications to the design of near-IR fluorochromes with high fluorescence efficiencies. J Am Chem Soc 116:3744–3752

    Article  CAS  Google Scholar 

  32. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core–shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475

    Article  CAS  Google Scholar 

  33. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  34. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  CAS  Google Scholar 

  35. Mitchell GP, Mirkin CA, Letsinger RL (1999) Programmed assembly of DNA functionalized quantum dots. J Am Chem Soc 121:8122–8123

    Article  CAS  Google Scholar 

  36. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    Article  CAS  Google Scholar 

  37. Gao XH, Yang LL, Petros JA, Marshal FF, Simons JW, Nie SM (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16:63–72

    Article  CAS  Google Scholar 

  38. Wang Q, Xu Y, Zhao X, Chang Y, Liu Y, Jiang L, Sharma J, Seo DK, Yan H (2007) A facile one-step in situ functionalization of quantum dots with preserved photoluminescence for bioconjugation. J Am Chem Soc 129:6380–6381

    Article  CAS  Google Scholar 

  39. Xing Y et al (2007) Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc 2:1152–1165

    Article  CAS  Google Scholar 

  40. Nann T (2005) Phase-transfer of CdSe@ZnS quantum dots using amphiphilic hyperbranched polyethylenimine. Chem Commun:1735–1736

    Google Scholar 

  41. Nann T, Mulvaney P (2004) Single quantum dots in spherical silica particles. Angew Chem Int Ed 43:5393–5396

    Article  CAS  Google Scholar 

  42. Riegler J, Nick P, Kielmann U, Nann T (2003) Visualizing the self-assembly of tubulin with luminescent nanorods. J Nanosci Nanotechnol 3:380–385

    Article  CAS  Google Scholar 

  43. Xu S, Ziegler J, Nann T (2008) Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals. J Mater Chem 18:2653–2656

    Article  CAS  Google Scholar 

  44. Xie R, Rutherford M, Peng X (2009) Formation of high-quality I−III−VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J Am Chem Soc 131:5691–5697

    Article  CAS  Google Scholar 

  45. Blasse G, Grabmaier BC (1994) Luminescent materials. Springer, Berlin

    Book  Google Scholar 

  46. Auzel F (2004) Upconversion and anti-stokes processes with f and d Ions in solids. Chem Rev 104:139–174

    Article  CAS  Google Scholar 

  47. Stouwdam JW, van Veggel F (2002) Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett 2:733–737

    Article  CAS  Google Scholar 

  48. Fort E, Gresillon S (2008) Surface enhanced fluorescence. J Phys D Appl Phys 41:013001

    Article  CAS  Google Scholar 

  49. Mooradian A (1969) Photoluminescence of metals. Phys Rev Lett 22:185

    Article  CAS  Google Scholar 

  50. Zheng J, Zhang C, Dickson RM (2004) Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett 93:077402

    Article  CAS  Google Scholar 

  51. Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108:423–461

    Article  CAS  Google Scholar 

  52. Medlycott EA, Hanan GS (2005) Designing tridentate ligands for ruthenium(II) complexes with prolonged room temperature luminescence lifetimes. Chem Soc Rev 34:133–142

    Article  CAS  Google Scholar 

  53. Montalti M, Credi A, Prodi L, Gandolfi MT (2006) Handbook of photochemistry, 3rd edn. CRC, Taylor & Francis Group, LLC, Boca Raton

    Google Scholar 

  54. Trinquet E, Mathis G (2006) Fluorescence technologies for the investigation of chemical libraries. Mol BioSyst 2:381–387

    Article  CAS  Google Scholar 

  55. Leonard JP, Nolan CB, Stomeo F, Gunnlaugsson T (2007) Photochemistry and photophysics of coordination compounds. In: Balzani V, Campagna S (eds) Topics in Current Chemistry Photochemistry and Photophysics of Coordination Compounds. Vol II, Lanthanides, 281:1–43

    CAS  Google Scholar 

  56. Bünzli JG (2009) Lanthanide luminescent bioprobes (LLBs). Chem Lett 38:104–109

    Article  Google Scholar 

  57. Deiters E, Song B, Chauvin AS, Vandevyver CDB, Gumy F, Bunzli JCG (2009) Luminescent bimetallic lanthanide bioprobes for cellular imaging with excitation in the visible-light range. Chem Eur J 15:885–900

    Article  CAS  Google Scholar 

  58. Armelao L, Quici S, Barigelletti F, Accorsi G, Bottaro G, Cavazzini M, Tondello E (2010) Design of luminescent lanthanide complexes: from molecules to highly efficient photo-emitting materials. Coord Chem Rev 254:487–505

    Article  CAS  Google Scholar 

  59. McBride J, Treadway J, Feldman LC, Pennycook SJ, Rosenthal SJ (2006) Structural basis for near unity quantum yield core/shell nanostructures. Nano Lett 6:1496–1501

    Article  CAS  Google Scholar 

  60. Fernee MJ, Thomsen E, Jensen P, Rubinsztein-Dunlop H (2006) Highly efficient luminescence from a hybrid state found in strongly quantum confined PbS nanocrystals. Nanotechnology 17:956–962

    Article  CAS  Google Scholar 

  61. Lifshitz E et al (2006) Stable PbSe/PbS and PbSe/PbSexS1-x core–shell nanocrystal quantum dots and their applications. J Phys Chem B 110:25356–25365

    Article  CAS  Google Scholar 

  62. He GS, Yong K, Zheng Q, Sahoo Y, Baev A, Ryasnyanskiy AI, Prasad PN (2007) Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range. Opt Exp 15:12818–12833

    Article  CAS  Google Scholar 

  63. Clapp AR et al (2007) Two-Photon excitation of quantum-dot-based fluorescence resonance energy transfer and its applications. Adv Mater 19:1921–1926

    Article  CAS  Google Scholar 

  64. Jaiswal JK, Simon SM (2004) Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol 14:497–504

    Article  CAS  Google Scholar 

  65. Xu C, Zipfel W, Shera JB, Williams RM, Webb WW (1996) Multiphoton fluorescence excitation: new spectral window for biological nonlinear microscopy. Proc Natl Acad Sci USA 93:10763–10768

    Article  CAS  Google Scholar 

  66. Mihindukulasuriya SH, Morcone TK, McGown LB (2003) Characterization of acridone dyes for use in four-decay detection in DNA sequencing. Electrophoresis 24:20–25

    Article  CAS  Google Scholar 

  67. Hennig A, Florea M, Roth D, Enderle T, Nau WM (2007) Design of peptide substrates for nanosecond time-resolved fluorescence assays of proteases: 2,3-diazabicyclo[2.2.2]oct-2-ene as a noninvasive fluorophore. Anal Biochem 360:255–265

    Article  CAS  Google Scholar 

  68. Zhu L, Stryjweski WJ, Soper SA (2004) Multiplexed fluorescence detection with microfabricated devices with both time-resolved and spectral-discrimination capabilities using near-infrared fluorescence. Anal Biochem 330:206–218

    Article  CAS  Google Scholar 

  69. Grecco HE, Lidke KA, Heintzmann R, Lidke DS, Spagnuolo C, Martinez OE, Jares-Erijman EA, Jovin TM (2004) Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells. Microsc Res Tech 65:169–179

    Article  CAS  Google Scholar 

  70. Sakamoto T, Mahara A, Munaka T, Yamagata K, Iwase R, Yamaoka T, Murakami A (2004) Time-resolved luminescence anisotropy-based detection of immunoglobulin G using long-lifetime Ru(II) complex-labeled protein A. Anal Biochem 329:142–144

    Article  CAS  Google Scholar 

  71. Morris KJ, Roach MS, Xu WY, Demas JN, DeGraff BA (2007) Luminescence lifetime standards for the nanosecond to microsecond range and oxygen quenching of ruthenium(II) complexes. Anal Chem 79:9310–9314

    Article  CAS  Google Scholar 

  72. Wolfbeis OS, Klimant I, Werner T, Huber C, Kosch U, Krause C, Neurauter G, Dürkop A (1998) Set of luminescence decay time based chemical sensors for clinical applications. Sens Actuators B 51:17–24

    Article  Google Scholar 

  73. Hemmilä I, Webb S (1997) Time-resolved fluorometry: an overview of the labels and core technologies for drug screening applications. Drug Discov Today 2:373–381

    Article  Google Scholar 

  74. Samiotaki M, Kwiatkowski M, Ylitalo N, Landegren U (1997) Seven-color time-resolved fluorescence hybridization analysis of human papilloma virus types. Anal Biochem 253:156–161

    Article  CAS  Google Scholar 

  75. Willner I, Patolsky F, Wasserman J (2001) Photoelectrochemistry with controlled DNA-cross-linked CdS nanoparticle arrays. Angew Chem Int Ed 40:1861–1864

    Article  CAS  Google Scholar 

  76. Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16:63–72

    Article  CAS  Google Scholar 

  77. Sukhanova A et al (2004) Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal Biochem 324:60–67

    Article  CAS  Google Scholar 

  78. Pauli J, Vag T, Haag R, Spieles M, Wenzel M, Kaiser WA, Resch-Genger U, Hilger I (2009) An in vitro characterization study of new near infrared dyes for molecular imaging. Eur J Med Chem 44:3496–3503

    Article  CAS  Google Scholar 

  79. Fare TL et al (2003) Effects of atmospheric ozone on microarray data quality. Anal Chem 75:4672–5

    Article  CAS  Google Scholar 

  80. Ziegler J, Merkulov A, Grabolle M, Resch-Genger U, Nann T (2007) High-quality ZnS shells for CdSe nanoparticles: rapid microwave synthesis. Langmuir 23:7751–7759

    Article  CAS  Google Scholar 

  81. Smith AM, Dave S, Nie S, True L, Gao X (2006) Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev Mol Diagn 6:231–244

    Article  CAS  Google Scholar 

  82. Lee SF, Osborne MA (2009) Brightening, blinking, bluing and bleaching in the life of a quantum dot: friend or foe? Chemphyschem 10:2174–2191

    Article  CAS  Google Scholar 

  83. Achilefu S (2004) Lighting up tumors with receptor-specific optical molecular probes. Technol Cancer Res Treat 3:393–409

    CAS  Google Scholar 

  84. Greenbaum L, Rothmann C, Lavie R, Malik Z (2000) Green fluorescent protein photobleaching: a model for protein damage by endogenous and exogenous singlet oxygen. Biol Chem 381:1251–1258

    Article  CAS  Google Scholar 

  85. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    Article  CAS  Google Scholar 

  86. Parak WJ, Pellegrino T, Plank C (2005) Labelling of cells with quantum dots. Nanotechnology 16:R9–R25

    Article  CAS  Google Scholar 

  87. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  Google Scholar 

  88. Sun XK, Rossin R, Turner JL, Becker ML, Joralemon MJ, Welch MJ, Wooley KL (2005) An assessment of the effects of shell cross-linked nanoparticle size, core composition, and surface PEGylation on in vivo biodistribution. Biomacromolecules 6:2541–2554

    Article  CAS  Google Scholar 

  89. Ma J, Chen J, Guo J, Wang CC, Yang WL, Xu L, Wang PN (2006) Photostability of thiol-capped CdTe quantum dots in living cells: the effect of photo-oxidation. Nanotechnology 17:2083–2089

    Article  CAS  Google Scholar 

  90. Kirchner C, Liedl T, Kudera S, Pellegrino T, Munoz Javier A, Gaub HE, Stolzle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338

    Article  CAS  Google Scholar 

  91. Selvan ST, Tan TT, Ying JY (2005) Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Adv Mater 17:1620–1625

    Article  CAS  Google Scholar 

  92. Lovric J, Cho SJ, Winnik FM, Maysinger D (2005) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12:1227–1234

    Article  CAS  Google Scholar 

  93. Xu S, Kumar S, Nann T (2006) Rapid synthesis of high-quality InP nanocrystals. J Am Chem Soc 128:1054–1055

    Article  CAS  Google Scholar 

  94. Berlier JE et al (2003) Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates. J Histochem Cytochem 51:1699–1712

    Article  CAS  Google Scholar 

  95. Mazumder S, Dey R, Mitra MK, Mukherjee S, and Das GC (2009) Review: biofunctionalized quantum dots in biology and medicine. J Nanomater 2009:17

    Google Scholar 

  96. Michalet X et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  CAS  Google Scholar 

  97. Mitchell GP, Mirkin CA, Letsinger RL (1999) Programmed assembly of DNA functionalized quantum dots. J Am Chem Soc 121:8122–8123

    Article  CAS  Google Scholar 

  98. Howarth M, Liu WH, Puthenveetil S, Zheng Y, Marshall LF, Schmidt MM, Wittrup KD, Bawendi MG, Ting AY (2008) Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat Methods 5:397–399

    Article  CAS  Google Scholar 

  99. Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) Review – the fluorescent toolbox for assessing protein location and function. Science 312:217–224

    Article  CAS  Google Scholar 

  100. Los GV et al (2008) HatoTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382

    Article  CAS  Google Scholar 

  101. Torchilin VP (2006) Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Ann Rev Biomed Eng 8:343–375

    Article  CAS  Google Scholar 

  102. Nagayama S, Zeng SQ, Xiong WH, Fletcher ML, Masurkar AV, Davis DJ, Pieribone VA, Chen WR (2007) In vivo simultaneous tracing and Ca2+ imaging of local neuronal circuits. Neuron 53:789–803

    Article  CAS  Google Scholar 

  103. Chang YP, Pinaud F, Antelman J, Weiss S (2008) Tracking bio-molecules in live cells using quantum dots. J Biophotonics 1:287–298

    Article  CAS  Google Scholar 

  104. Hild WA, Breunig M, Goepferich A (2008) Quantum dots – nano-sized probes for the exploration of cellular and intracellular targeting. Eur J Pharm Biopharm 68:153–168

    Article  CAS  Google Scholar 

  105. Howarth M, Takao K (2005) Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Natl Acad Sci USA 102:7583–7588

    Article  CAS  Google Scholar 

  106. So MK, Yao HQ, Rao JH (2008) HaloTag protein-mediated specific labeling of living cells with quantum dots. Biochem Biophys Res Commun 374:419–423

    Article  CAS  Google Scholar 

  107. Derfus AM, Chan WCW, Bhatia SN (2004) Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 16:961–966

    Article  CAS  Google Scholar 

  108. Chen X, Kis A, Zettl A, Bertozzi CR (2007) A cell nanoinjector based on carbon nanotubes. Proc Natl Acad Sci USA 104:8218–8222

    Article  CAS  Google Scholar 

  109. Yum K, Na S, Xiang Y, Wang N, Yu MF (2009) Mechanochemical delivery and dynamic tracking of fluorescent quantum dots in the cytoplasm and nucleus of living cells. Nano Lett 9:2193–2198

    Article  CAS  Google Scholar 

  110. Kim BYS, Jiang W, Oreopoulos J, Yip CM, Rutka JT, Chan WCW (2008) Biodegradable quantum dot nanocomposites enable live cell labeling and imaging of cytoplasmic targets. Nano Lett 8:3887–3892

    Article  CAS  Google Scholar 

  111. Liu W et al (2010) Compact biocompatible quantum dots via RAFT-mediated synthesis of imidazole-based random copolymer ligand. J Am Chem Soc 132:472–83

    Article  CAS  Google Scholar 

  112. Zhou M, Ghosh I (2006) Current trends in peptide science. Quantum dots and peptides: a bright future together. Biopolymers (Peptide Science) 88:325–339

    Article  CAS  Google Scholar 

  113. Hussey SL (2002) Efficient delivery of streptavidin to mammalian cells: clathrin-mediated endocytosis regulated by a synthetic ligand. J Am Chem Soc 124:6265–6273

    Article  CAS  Google Scholar 

  114. Fillon YA (2005) Cell penetrating agents based on a polyproline helix scaffold. J Am Chem Soc 127:11798–11803

    Article  CAS  Google Scholar 

  115. Chen AK, Cheng ZL, Behlke MA, Tsourkas A (2008) Assessing the sensitivity of commercially available fluorophores to the intracellular environment. Anal Chem 80:7437–7444

    Article  CAS  Google Scholar 

  116. Resch-Genger U, Hoffmann K, Nietfeld W, Engel A, Neukammer J, Nitschke R, Ebert B, Macdonald R (2005) How to improve quality assurance in fluorometry: fluorescence-inherent sources of error and suited fluorescence standards. J Fluoresc 15:337–362

    Article  CAS  Google Scholar 

  117. Johansson MK, Cook RM (2003) Intramolecular dimers: a new design strategy for fluorescence-quenched probes. Chem Eur J 9:3466–3471

    Article  CAS  Google Scholar 

  118. Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural changes accompanying intramolecular electron transfer: focus an twisted intramolecular charge transfer states and structures. Chem Rev 103:3899–4031

    Article  Google Scholar 

  119. Ji X, Copenhaver D, Sichmeller C, Peng X (2008) Ligand bonding and dynamics on colloidal nanocrystals at room temperature: the case of alkylamines on CdSe nanocrystals. J Am Chem Soc 130:5726–5735

    Article  CAS  Google Scholar 

  120. Kikuchi K, Takakusa H, Nagano T (2004) Recent advances in the design of small molecule-based FRET sensors for cell biology. Trends Analyt Chem 23:407–415

    Article  CAS  Google Scholar 

  121. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  CAS  Google Scholar 

  122. Mank M, Griesbeck O (2008) Genetically encoded calcium indicators. Chem Rev 108:1550–1564

    Article  CAS  Google Scholar 

  123. Niino Y, Hotta K, OkA K (2009) Simultaneous live cell imaging using dual FRET sensors with a single excitation light. PLoS One 4:e6036

    Article  CAS  Google Scholar 

  124. McGrath N, Barroso M (2008) Quantum dots as fluorescence resonance energy transfer donors in cells. J Biomed Opt 13(3):031210

    Google Scholar 

  125. Clapp AR, Medintz IL, Fisher BR, Anderson GP, Mattoussi H (2005) Can luminescent quantum dots be efficient energy acceptors with organic dye donors? J Am Chem Soc 127:1242–1250

    Article  CAS  Google Scholar 

  126. Rosa SCD, Brenchley JM, Roederer M (2003) Beyond six colors: a new era in flow cytometry. Nat Med 9:112–117

    Article  CAS  Google Scholar 

  127. Goldman ER, Clapp AR, Anderson GP, Uyeda HT, Mauro JM, Medintz IL, Mattoussi H (2004) Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal Chem 76:684–688

    Article  CAS  Google Scholar 

  128. Huang D, Peng X, Su L, Wang D, Khuri FR, Shin DM, Chen Z (2010) Comparison and optimization of multiplexed quantum dot-based immunohistofluorescence. Nano Res 3:61–68

    Article  CAS  Google Scholar 

  129. Snyder TM, McGown LB (2005) Multiplex single strand conformation polymorphism analysis by capillary electrophoresis with on-the-fly fluorescence lifetime detection. Appl Spectrosc 59:335–339

    Article  CAS  Google Scholar 

  130. Ness JM, Akhtar RS, Latham CB, Roth KA (2003) Combined tyramide signal amplification and quantum dots for sensitive and photostable immunofluorescence detection. J Histochem Cytochem 51:981–987

    Article  CAS  Google Scholar 

  131. Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16:55–62

    Article  CAS  Google Scholar 

  132. Lee J, Javed T, Skeini T, Govorov AO, Bryant GW, Kotov NA (2006) Bioconjugated Ag nanoparticles and CdTe nanowires: metamaterials with field-enhanced light absorption. Angew Chem Int Ed 45:4819–4823

    Article  CAS  Google Scholar 

  133. Govoroch AO, Bryant GW, Zhang W, Skeini T, Lee J, Kotov NA, Slocik JM, Naik RR (2006) Exciton–plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies. Nano Lett 6:984–994

    Article  CAS  Google Scholar 

  134. Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J, Bhalgat MK, Millard PJ, Mao F, Leung WY, Haugland RP (1999) Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem 47:1179–1188

    Article  CAS  Google Scholar 

  135. Parak WJ, Boudreau R, Le Gros M, Gerion D, Zanchet D, Micheel CM, Williams SC, Alivisatos AP, Larabell C (2002) Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 14:882–885

    Article  CAS  Google Scholar 

  136. Bentolila LA, Weiss S (2006) Single-step multicolor fluorescence in situ hybridization using semiconductor quantum dot-DNA conjugates. Cell Biochem Biophys 45:59–70

    Article  CAS  Google Scholar 

  137. Ji X (2008) Ligand bonding and dynamics on colloidal nanocrystals at room temperature: the case of alkylamines on CdSe nanocrystals. J Am Chem Soc 130:5726–5735

    Article  CAS  Google Scholar 

  138. Munro AM, Plante IJL, Ng MS, Ginger DS (2007) Quantitative study of the effects of surface ligand concentration on CdSe nanocrystal photoluminescence. J Phys Chem C 111:6220–6227

    Article  CAS  Google Scholar 

  139. Kopping JT, Patten TE (2008) Identification of acidic phosphorus-containing ligands involved in the surface chemistry of CdSe nanoparticles prepared in tri-n-octylphosphine oxide solvents. J Am Chem Soc 130:5689–5698

    Article  CAS  Google Scholar 

  140. Gomez DE (2006) Optical properties of single semiconductor nanocrystals. Phys Chem Chem Phys 8:4989–5011

    Article  CAS  Google Scholar 

  141. Robelek R, Stefani FD, Knoll W (2006) Oligonucleotide hybridization monitored by surface plasmon enhanced fluorescence spectroscopy with bio-conjugated core/shell quantum dots. Influence of luminescence blinking. Phys Status Solidi A-Appl Mater Sci 203:3468–3475

    Article  CAS  Google Scholar 

  142. Ebenstein Y, Mokari T, Banin U (2002) Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy. Appl Phys Lett 80:4033–4035

    Article  CAS  Google Scholar 

  143. Casanova D, Giaume D, Moreau M, Martin JL, Gacoin T, Boilot JP, Alexandrou A (2007) Counting the number of proteins coupled to single nanoparticles. J Am Chem Soc 129:12592–12593

    Article  CAS  Google Scholar 

  144. Kiyose K, Kojima H, Nagano T (2008) Functional near-infrared fluorescent probes. Chem Asian J 3:506–515

    Article  CAS  Google Scholar 

  145. Altinoglu EI, Russin TJ, Kaiser JM, Barth BM, Eklund PC, Kester M, Adair JH (2008) Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano 2:2075–2084

    Article  CAS  Google Scholar 

  146. Wang S, Jarrett BR, Kauzlarich SM, Louie AY (2007) Core/Shell quantum dots with high relaxivity and photoluminescence for multimodality imaging. J Am Chem Soc 129:3848–3856

    Article  CAS  Google Scholar 

  147. Grabolle M, Spieles M, Lesnyak V, Gaponik N, Eychmüller A, Resch-Genger U (2009) Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties. Anal Chem 81:6285–6294

    Article  CAS  Google Scholar 

  148. Orrit M, Basché T (2009) Steady light from quantum dots, at last. But how? ChemPhysChem 10:2383–2385

    Article  CAS  Google Scholar 

  149. Lidke K, Rieger B, Jovin T, Heintzmann R (2005) Superresolution by localization of quantum dots using blinking statistics. Opt Express 13:7052–7062

    Article  Google Scholar 

  150. Diez I, Ras RHA (2010) Few atom silver clusters as fluorescence reporters. In: Demchenko AP (ed) Advanced Fluorescence Reporters in Chemistry and Biology II. Springer Ser Fluoresc 9:307–332

    Google Scholar 

  151. Muhammed MAH, Pradeep T (2010) Luminescent quantum clusters of gold as bio-labels. In: Demchenko AP (ed) Advanced Fluorescence Reporters in Chemistry and Biology II. Springer Ser Fluoresc 9:333–353

    Google Scholar 

  152. Kim E, Park SB (2010) Discovery of New Fluorescent Dyes: Targeted Synthesis or Combinatorial Approach? In: Demchenko AP (ed.), Advanced Fluorescence Reporters in Chemistry and Biology I. Springer Ser Fluoresc 8:149–186

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Resch-Genger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Resch-Genger, U., Grabolle, M., Nitschke, R., Nann, T. (2010). Nanocrystals and Nanoparticles Versus Molecular Fluorescent Labels as Reporters for Bioanalysis and the Life Sciences: A Critical Comparison. In: Demchenko, A. (eds) Advanced Fluorescence Reporters in Chemistry and Biology II. Springer Series on Fluorescence, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04701-5_1

Download citation

Publish with us

Policies and ethics