Skip to main content

Constraint-Based Strategy for Pairwise RNA Secondary Structure Prediction

  • Conference paper
Book cover Progress in Artificial Intelligence (EPIA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5816))

Included in the following conference series:

  • 1337 Accesses

Abstract

RNA secondary structure prediction depends on context. When only a few (sometimes putative) RNA homologs are available, one of the most famous approach is based on a set of recursions proposed by Sankoff in 1985. Although this modus operandi insures an algorithmically optimal result, the main drawback lies in its prohibitive time and space complexities. A series of heuristics were developed to face that difficulty and turn the recursions usable. In front of the inescapable intricacy of the question when handling the full thermodynamic model, we come back in the present paper to a biologically simplified model that helps focusing on the algorithmic issues we want to overcome. We expose our ongoing developments by using the constraints framework which we believe is a powerful paradigm for heuristic design. We give evidence that the main heuristics proposed by others (structural and alignment banding, multi-loop restriction) can be refined in order to produce a substantial gain both in time computation and space requirements. A beta implementation of our approach, that we named ARNICA, exemplify that gain on a sample set that remains unaffordable to other methods. The sources and sample tests of ARNICA are available at http://centria.di.fct.unl.pt/~op/arnica.tar.gz

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, J.W.: The Ribonuclease P database. NAR 27(314) (1999), http://www.mbio.ncsu.edu/RNaseP/

  2. Capriotti, E., Marti-Renom, M.A.: Computational RNA structure prediction. Current Bioinformatics 3(1), 32–45 (2008)

    Article  Google Scholar 

  3. Dowell, R.D., Eddy, S.R.: Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints. BMC Bioinformatics 7, 400 (2006)

    Article  Google Scholar 

  4. Eddy, S.R., Durbin, R.: RNA sequence analysis using covariance models. NAR 22, 2079–2088 (1994)

    Article  Google Scholar 

  5. Eppstein, D., Galil, Z., Giancarlo, R.: Speeding up dynamic programming. In: Proceedings of the29th IEEE Annual Symposium on Foundations of Computer Science, White Plains, NY, pp. 488–496. IEEE Computer Society Press, Los Alamitos (1988)

    Google Scholar 

  6. Eppstein, D., Galil, Z., Giancarlo, R., Italiano, G.F.: Sparse dynamic programming I: linear cost functions. J. ACM 39(3), 519–545 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eppstein, D., Galil, Z., Giancarlo, R., Italiano, G.F.: Sparse dynamic programming II: convex and concave cost functions. J. ACM 39(3), 546–567 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gardner, P.P., Giegerich, R.: A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics 5(1) (September 2004)

    Google Scholar 

  9. Hofacker, I.L., Bernhart, S.H., Stadler, P.F.: Alignment of RNA base pairing probability matrices. Bioinformatics 20(14), 2222–2227 (2004)

    Article  Google Scholar 

  10. Havgaard, J.H., Lyngsø, R.B., Stormo, G.D., Gorodkin, J.: Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%. Bioinformatics 21(9), 1815–1824 (2005)

    Article  Google Scholar 

  11. Hofacker, I.L.: Vienna RNA secondary structure server. Nucleic Acids Res 31(13), 3429–3431 (2003)

    Article  Google Scholar 

  12. Holmes, I.: Accelerated probabilistic inference of RNA structure evolution. BMC Bioinformatics 6(1) (2005)

    Google Scholar 

  13. Harmanci, A.O., Sharma, G., Mathews, D.H.: Efficient pairwise RNA structure prediction using probabilistic alignment constraints in dynalign. BMC Bioinformatics, 8 (April 2007)

    Google Scholar 

  14. Havgaard, J.H., Torarinsson, E., Gorodkin, J.: Fast pairwise structural RNA alignments by pruning of the dynamical programming matrix. PLoS Computational Biology 3(10), e193 (2007)

    Article  Google Scholar 

  15. Jaeger, J.A., Turner, D.H., Zuker, M.: Improved predictions of secondary structures for RNA. PNAS 86, 7706–7710 (1989)

    Article  Google Scholar 

  16. Knudsen, B., Hein, J.: Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res. 31(13), 3423–3428 (2003)

    Article  Google Scholar 

  17. McCaskill, J.S.: The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29, 1105–1119 (1990)

    Article  Google Scholar 

  18. Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. JMB 288, 911–940 (1999)

    Article  Google Scholar 

  19. Mathews, D.H., Turner, D.H.: Dynalign: An algorithm for finding the secondary structure common to two RNA sequences. JMB (in press, 2002)

    Google Scholar 

  20. Nussinov, R., Jacobson, A.B.: Fast algorithm for predicting the secondary structure of single stranded RNA. PNAS 77, 6309–6313 (1980)

    Article  Google Scholar 

  21. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)

    Article  Google Scholar 

  22. O’Brien, E.A., Higgins, D.G.: Empirical estimation of the reliability of ribosomal RNA alignments. Bioinformatics 14(10), 830–838 (1998)

    Article  Google Scholar 

  23. Sankoff, D.: Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J. Appl. Math. 45(5), 810–825 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. JMB 147, 195–197 (1981)

    Article  Google Scholar 

  25. Shapiro, B.A., Yingling, Y.G., Kasprzak, W., Bindewald, E.: Bridging the gap in RNA structure prediction. Curr. Opin. Struct. Biol. 17(2), 157–165 (2007)

    Article  Google Scholar 

  26. Torarinsson, E., Havgaard, J.H.H., Gorodkin, J.: Multiple structural alignment and clustering of RNA sequences. Bioinformatics (February 2007)

    Google Scholar 

  27. Watermann, M.S.: Sequence alignments in the neighborhood of the optimum with general application to dynamic programming. Applied Mathematical Sciences 80, 3123–3124 (1983)

    MATH  Google Scholar 

  28. Zuker, M., Mathews, D.H., Turner, D.H.: Algorithms and thermodynamics for RNA secondary structure prediction. A practical guide. RNA Biochemistry and Biotechnology (1999)

    Google Scholar 

  29. Zuker, M.: MFOLD web server for nucleic acid folding and hybridization prediction. NAR 31(13), 1–10 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Perriquet, O., Barahona, P. (2009). Constraint-Based Strategy for Pairwise RNA Secondary Structure Prediction. In: Lopes, L.S., Lau, N., Mariano, P., Rocha, L.M. (eds) Progress in Artificial Intelligence. EPIA 2009. Lecture Notes in Computer Science(), vol 5816. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04686-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04686-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04685-8

  • Online ISBN: 978-3-642-04686-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics