Skip to main content

Adsorption of Cysteine on the Au(110)-surface: A Density Functional Theory Study

  • Conference paper
  • First Online:

Abstract

We present ab initio studies towards the adsorption of the amino acid cysteine on the Au(110) surface. By means of density functional theory calculations and using the repeated-slab supercell method, we investigate three main aspects relevant for the adsorption process. First, in order to estimate the slab width required for an accurate description of the gold surface, we calculate the surface energies for both the unreconstructed and the missing row (1×2) reconstructed Au(110) surface for varying slab widths. Then, we determine the formation energies for vacancies in the salient row on the missing-row reconstructed surface. This allows us to estimate the energy cost for a local lifting of the missing-row reconstruction upon molecular adsorption. Finally, we examine the formation of cysteine dimers via carboxyl-carboxyl hydrogen bonds and investigate the changes in the bond energy caused by intermolecular strain. We predict the cysteine dimer formation in Au surface vacancies to play an important role in the adsorption process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Nilsson and G. M. Petterson, Surf. Sci. Rep. 55, 49 (2004).

    Article  Google Scholar 

  2. H. Ishii, K. Sugiyama, I. Eisuke, and K. Seki, Adv. Mater. 11, 605 (1999).

    Article  Google Scholar 

  3. G. Heimel, L. Romaner, J.-L. Brédas, and E. Zojer, Phys. Rev. Lett. 96, 196806 (2006).

    Article  Google Scholar 

  4. H. Vásquez, Y. J. Dappe, J. Ortega, and F. Flores, J. Chem. Phys. 126, 144703 (2007).

    Article  Google Scholar 

  5. I. G. Hill, A. Rajagopal, A. Kahn, and Y. Hu, Appl. Phys. Lett. 73, 662 (1998).

    Article  Google Scholar 

  6. W. G. Schmidt, K. Seino, M. Preuss, A. Hermann, F. Ortmann, and F. Bechstedt, Appl. Phys. A 85, 387 (2006).

    Article  Google Scholar 

  7. C. Vericat, M. E. Vela, and R. C. Salvarezza, Phys. Chem. Chem. Phys. 7, 3258 (2005).

    Article  Google Scholar 

  8. V. De Renzi, R. Rousseau, D. Marchetto, R. Biagi, S. Scandolo, and U. del Pennino, Phys. Rev. Lett. 95, 046804 (2005).

    Article  Google Scholar 

  9. E. Rauls, S. Blankenburg, and W. G. Schmidt, Surf. Sci. 602, 2170 (2008).

    Article  Google Scholar 

  10. C. Joachim, J. K. Gimzewski, and A. Aviram, Nature 408, 541 (2000).

    Article  Google Scholar 

  11. H. B. Akkerman, P. W. M. Blom, D. M. de Leeuw, and B. de Boer, Nature 441, 69 (2006).

    Article  Google Scholar 

  12. C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stoddart, P. J. Kuekes, R. S. Williams, and J. R. Heath, Science 285, 391 (1999).

    Article  Google Scholar 

  13. S. Y. Quek, L. Venkataraman, H. J. Choi, S. G. Loule, M. S. Hybertsen, and J. B. Neaton, Nano Letters 7, 3477 (2007).

    Article  Google Scholar 

  14. A. Kühnle, T. R. Linderoth, B. Hammer, and F. Besenbacher, Nature 415, 891 (2002).

    Article  Google Scholar 

  15. M. Yu, N. Bovet, C. S. Satterley, S. Bengiō, K. R. J. Lovelock, P. K. Milligan, R. G. Jones, D. P. Woodruff, and V. Dhanak, Phys. Rev. Lett. 97, 166102 (2006).

    Article  Google Scholar 

  16. A. Kühnle, L. M. Molina, T. R. Linderoth, B. Hammer, and F. Besenbacher, Phys. Rev. Lett. 93, 086101 (2004).

    Article  Google Scholar 

  17. A. Kühnle, T. R. Linderoth, and F. Besenbacher, J. Am. Chem. Soc. 128, 1076 (2005).

    Article  Google Scholar 

  18. A. Kühnle, T. R. Linderoth, and F. Besenbacher, J. Am. Chem. Soc. 125, 14680 (2003).

    Article  Google Scholar 

  19. R. R. Nazmutdinov, J. Zhang, T. T. Zinkicheva, I. R. Manyurov, and J. Ulstrup, Langmuir 22, 7556 (2006).

    Article  Google Scholar 

  20. R. Di Felice, A. Selloni, and E. Molinari, J. Phys. Chem. B 107, 1151 (2003).

    Article  Google Scholar 

  21. R. Di Felice and A. Selloni, J. Chem. Phys. 120, 4906 (2004).

    Article  Google Scholar 

  22. G. Kresse and J. Furthmüller, Comp. Mater. Sci 6, 15 (1996).

    Article  Google Scholar 

  23. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  24. J. P. Perdew, Electronic Structure of Solids ’91, p. 11, Akademie-Verlag, Berlin (1991).

    Google Scholar 

  25. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  Google Scholar 

  26. R. Maul, M. Preuss, F. Ortmann, K. Hannewald, and F. Bechstedt, J. Phys. Chem. A 111, 4370 (2007).

    Article  Google Scholar 

  27. F. Ortmann, W. G. Schmidt, and F. Bechstedt, Phys. Rev. Lett. 95, 186101 (2005).

    Article  Google Scholar 

  28. F. Ortmann, W. G. Schmidt, and F. Bechstedt, Phys. Rev. B 73, 205101 (2006).

    Article  Google Scholar 

  29. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  30. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  MathSciNet  Google Scholar 

  31. A. Nduwimana, X. G. Gong, and X. Q. Wang, Appl. Surf. Sci. 219, 129 (2003).

    Article  Google Scholar 

  32. S. Olivier, G. Tréglia, A. Saúl, and F. Williaime, Surf. Sci. 600, 5131 (2006).

    Article  Google Scholar 

  33. S. B. Zhang and J. E. Northrup, Phys. Rev. Lett. 67, 2339 (1991).

    Article  Google Scholar 

  34. R. Maul, F. Ortmann, M. Preuss, K. Hannewald, and F. Bechstedt, J. Comp. Chem. 28, 1817 (2007).

    Article  Google Scholar 

  35. D. Troitiño, L. Bailey, and F. Peral, Theochem 767, 131 (2006).

    Article  Google Scholar 

  36. M. Preuss, W. G. Schmidt, and F. Bechstedt, Phys. Rev. Lett. 94, 236102 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Höffling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Höffling, B., Ortmann, F., Hannewald, K., Bechstedt, F. (2010). Adsorption of Cysteine on the Au(110)-surface: A Density Functional Theory Study. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '09. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04665-0_4

Download citation

Publish with us

Policies and ethics