Skip to main content

Effect of Spin-Orbit Coupling on the Magnetic Properties of Materials: Results

  • Chapter
  • First Online:
Advances in the Atomic-Scale Modeling of Nanosystems and Nanostructured Materials

Part of the book series: Lecture Notes in Physics ((LNP,volume 795))

  • 1356 Accesses

Abstract

This contribution concerning the effect of spin–orbit coupling on the magnetic properties of materials is divided into two sections. In the first section we review the method based on the density functional theory (DFT) within the local density approximation (LDA) used to compute the electronic structure, the magnetic anisotropy, the x-ray absorption spectra, and the x-ray magnetic circular dichroism. We give the major approximations used to derive the Kohn–Sham equations with or without the Hubbard interaction for correlated orbitals. We give also a brief introduction to the generalized gradient approximation (GGA). We then provide a solution of the latter equations using the full-potential linear augmented plane wave (FLAPW) basis set and discuss the so-called LDA+U method, where the Hubbard U is included for localized orbitals. We show how the relativistic effects, such as the spin–orbit coupling, can be introduced into band structure calculations and show their effect on magnetism, i.e., magnetic anisotropy energy (MAE), magnetooptical properties, and x-ray magnetic circular dichroism (XMCD). Then we show a brief derivation of the force theorem for the calculation of the magnetic anisotropy as well as a description of its application to the MAE calculations and show the details of the calculation of the XMCD matrix elements in the electric dipole approximation. The second section of this contribution includes some applications of the method to the computation of the electronic, magnetic, and spectroscopic properties of spintronics materials. In particular, we investigate the electronic structure and x-ray magnetic circular dichroism (XMCD) of Sr2FeMoO6 (SFMO for short) and other useful ferromagnetic half-metals with 100% spin polarization, materials useful for spin injection. In particular, we show that the spin–orbit coupling reduces the spin polarization, while the intra-site electronic correlations tend to increase it. For example, SFMO is found to be a half-metallic ferrimagnet with a gap in the spin-up channel. The calculated spin magnetic moments on iron and Mo sites confirm the ferromagnetic ordering and settle the controversy existing between the earlier experimental works. The orbital magnetism at the Fe and Mo sites agrees quite well with the recent experimental XMCD measurements. The computed L2,3 XMCD at the Fe and the Mo sites compares fairly well with the experiment. The XMCD sum rule computed spin and orbital magnetic moments are in good agreement with the values obtained from the direct self-consistent calculations. In the last application, we focus on the GGA+U treatment of the electronic and magnetic structure of Gd and Gd-related compounds, such as GdN and GdFe2. We compare the calculated density of states to the experimental photoemission and inverse photoemission spectra (XPS and BIS) and determine the Fermi surface with and without the Hubbard U and spin–orbit coupling. The GGA+U is found to be the most appropriate for treating the 4f Gd electrons. We have investigated the bulk properties and calculated the XMCD spectra at the L2,3 edges at the Gd site of GdN. The agreement of the calculated spectra with experiment is the indication of the relevance of the XMCD formalism within the one-electron picture. The results also show that the ground-state electronic structure of GdN is that of a half-metal. Finally our computational method is used to determine the magnetic anisotropy aspect of Gd and its compounds GdN and GdFe2. Using force theorem, we have calculated the MAE of Gd, GdN, and GdFe2 for different directions of the magnetization. Indeed, owing to the nil spin–orbit interaction of the 4f half-filled shell, the force theorem is expected to be efficient for Gd and Gd compounds’ MAE calculations. This theorem allows a considerable computational effort gain since the spin–orbit coupling could be calculated only for one self-consistent iteration. Once again, the GGA+U method is found to be the most adequate approach for the force theorem calculations of the Gd MAE. The GGA and GGA-core model treatments of the 4f states have led to a wrong MAE. It turns out that the electronic properties and the magnetic properties of 4f systems are tightly related, and the 4f electrons play a crucial role in the computed magnetic anisotropy. Although the Gd MAE is found to be similar to that of a typical 3d transition metal like hcp Co, the GdN and GdFe2 cubic crystal MAEs are found to be different from that of a pure 3d cubic material like fcc Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Uiberacker, J. Zabloudil, P. Weinberger, L. Szunyogh, and C. Sommers, Phys. Rev. Lett. 82, 1289 (1999).

    Article  CAS  ADS  Google Scholar 

  2. D. Spisak and J. Hafner, J. Phys.: Condens Matter 12, L139 (2000).

    Article  CAS  ADS  Google Scholar 

  3. O. Eriksson and J. M. Wills, Electronic Structure and Physical Properties of Solids, ed. H. Dreyssé (Springer-Verlag, Heidelberg, 1998), p. 247.

    Google Scholar 

  4. I. Galanakis, S. Ostanin, M. Alouani, H. Dreyssé, and J. M. Wills, Phys. Rev. B 61, 599 (2000).

    Article  CAS  ADS  Google Scholar 

  5. I. Galanakis, M. Alouani, and H. Dreyssé, Phys. Rev. B 62, 6475 (2000).

    Article  CAS  ADS  Google Scholar 

  6. S. Beiden, W. Temmerman, Z. Szotek, and G. Gehring, J. Phys.: Condens Matter 57, 14247 (1998).

    CAS  Google Scholar 

  7. I. A. Abrikosov, A. M. Niklasson, S. I. Simak, B. Johansson, A. V. Ruban, and H. L. Skriver, Phys. Rev. Lett. 76, 4203 (1996).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. R. Zeller, P. Dederichs, B. Ujfalussy, L. Szunyogh, and P. Weinberger, Phys. Rev. B 52, 8807 (1995).

    Article  CAS  ADS  Google Scholar 

  9. M. Asato, A. Stells, T. Hoshino, T. Asada, S. Blügel, R. Z. R., and P. Dederichs, Phys. Rev. B 60, 5202 (1999).

    Google Scholar 

  10. The availability and the free diffusion of the LMTO and the LAPW numerical codes to the scientific community have intensified the use of ab-initio methods. For the diffusion of the LMTO code see the web page: www.mpi-stuttgart.mpg.de, for the FLAPW code called FLEUR see www.flapw.de, and for the Wien2k code see www.wien2k.at

  11. F. Nouvertné, U. May, M. Bamming, A. Rampe, U. Korte, G. Güntherodt, R. Pentcheva, and M. Scheffler, Phys. Rev. B 60, 14382 (1999).

    Article  ADS  Google Scholar 

  12. V. Stepanyuk, W. Hergert, P. Rennert, K. Wildberger, R. Zeller, and P. Dederichs, Phys. Rev. B 59, 1681 (1999).

    Article  CAS  ADS  Google Scholar 

  13. H. Dreyssé and C. Demangeat, Prog. Surf. Sci. 28, 65 (1997).

    Google Scholar 

  14. S. Handschuh and S. Blügel, Solid State Commun. 105, 633 (1998).

    Article  CAS  ADS  Google Scholar 

  15. J. Izquierdo, A. Vega, O. Elmouhssine, H. Dreyssé, and C. Demangeat, Phys. Rev. B 59, 14510 (1999).

    Article  CAS  ADS  Google Scholar 

  16. P. Krüger, M. Taguchi, and S. Meza-Aguilar, Phys. Rev. B 61, 15277 (2000).

    Article  ADS  Google Scholar 

  17. I. Galanakis, M. Alouani, and H. Dreyssé, Phys. Rev. B 62, 3923 (2000).

    Article  CAS  ADS  Google Scholar 

  18. F. Amalou, M. Benakki, A. Mokrani, and C. Demangeat, Europhys. Lett. 9, 149 (1999).

    CAS  Google Scholar 

  19. I. Turek, V. Drchal, J. Kudrnovsky, M. Sob, and P. Weinberger, Electronic Structure of Disordered Alloys, Surfaces and Interfaces (Kluwer, Borton, 1997).

    Google Scholar 

  20. I. Turek, S. Blügel, and J. Kudrnovsky, Phys. Rev. B 57, R11065 (1998).

    Article  CAS  ADS  Google Scholar 

  21. I. Turek, P. Weinberger, M. Freyss, D. Stoeffler, and H. Dreyssé, Phil. Mag. 78, 637 (1998).

    CAS  Google Scholar 

  22. I. Galanakis, S. Ostanin, M. Alouani, H. Dreyssé, and H. Ebert, Comp. Mat. Sci. 17, 455 (2000).

    Article  CAS  Google Scholar 

  23. S. Ray et al., Phys. Rev. Lett. 87, 09720 (2001).

    Article  CAS  Google Scholar 

  24. M. Besse et al., Europhys. Lett. 60, 608 (2002).

    Article  CAS  ADS  Google Scholar 

  25. J. S. Kang et al., Phys. Rev. B 66, 113105 (2002).

    Article  ADS  CAS  Google Scholar 

  26. Y. Moritoma et al., J. Phys. Soc. Jpn. 69, 1723 (2000).

    Article  ADS  Google Scholar 

  27. D. Sanchez et al., Phys. Rev. B 65, 104426 (2002).

    Article  ADS  CAS  Google Scholar 

  28. M. S. Moreno et al., Solid State Comm. 161, 104426 (2001).

    Google Scholar 

  29. K. Kuepper et al., Phys. Stat. Sol. 15, 3252 (2004).

    Article  ADS  CAS  Google Scholar 

  30. J. Herrero-Martin et al., J. Phys.: Condens Matter 16, 6877 (2004).

    Article  CAS  ADS  Google Scholar 

  31. J. Herrero-Martin et al., Physica Scripta T115, 471 (2005).

    Google Scholar 

  32. G. Jackeli, Phys. Rev. B 68, 092401 (2003).

    Article  ADS  CAS  Google Scholar 

  33. A. Chattopadhyay and A. J. Millis, Phys. Rev. B 64, 024424 (2001).

    Article  ADS  CAS  Google Scholar 

  34. D. D. Sarma et al., Phys. Rev. Lett. 85, 2549 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  35. S. Ray et al., Phys. Rev. B 67, 085109 (2003).

    Article  ADS  CAS  Google Scholar 

  36. V. Kanchana, G. Vaitheeswaran, M. Alouani, and A. Delin, Phys. Rev. B 75, 220404 (2007).

    Article  ADS  CAS  Google Scholar 

  37. T. Saha-Dasgupta and D. D. Sarma, Phys. Rev. B 64, 064408 (2001).

    Article  ADS  CAS  Google Scholar 

  38. K. I. Kobayashi et al., Nature 395, 677 (1998).

    Article  CAS  ADS  Google Scholar 

  39. H. T. Jeng and G. Y. Guo, Phys. Rev. B 67, 094438 (2003).

    Article  ADS  CAS  Google Scholar 

  40. G. Vaitheeswaran, V. Kanchana, and A. Delin, Appl. Phys. Lett. 86, 032513 (2005).

    Article  ADS  CAS  Google Scholar 

  41. G. Vaitheeswaran, V. Kanchana, and A. Delin, J. Phys. Conf. Ser. 29, 50 (2006).

    Article  CAS  ADS  Google Scholar 

  42. V. Kanchana, G. Vaitheeswaran, and M. Alouani, J. Phys.: Condens Matter 18, 5155 (2003).

    Article  ADS  CAS  Google Scholar 

  43. Z. Szotek et al., Phys. Rev. B 68, 104411 (2003).

    Article  ADS  CAS  Google Scholar 

  44. A. Ogale, S. B. Ogale, R. Ramesh, and T. Venkatesan, Appl. Phys. Lett. 75, 537 (1999).

    Article  CAS  ADS  Google Scholar 

  45. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  46. J. O. de Dimmock and A. J. Freeman, Phys. Rev. Lett. 13, 750 (1964).

    Article  CAS  ADS  Google Scholar 

  47. J. Sticht and J. Kübler, Solid State Commun. 53, 529 (1985).

    Article  CAS  ADS  Google Scholar 

  48. W. Temmerman and P. A. Sterne, J. Phys.: Condens Matter 2, 5529 (1990).

    Article  CAS  ADS  Google Scholar 

  49. D. J. Singh, Phys. Rev. B 44, 7451 (1991).

    Article  CAS  ADS  Google Scholar 

  50. B. Kim, A. B. Andrews, J. L. Erskine, K. J. Kim, and B. N. Harmon, Phys. Rev. Lett. 68, 1931 (1992).

    Article  CAS  PubMed  ADS  Google Scholar 

  51. D. Li, J. Pearson, S. D. Bader, D. N. Mcllory, C. Waldfried, and P. A. Dowben, Phys. Rev. B 51, 13895 (1995).

    Article  CAS  ADS  Google Scholar 

  52. K. Maiti, M. C. Malagoli, A. Dallmeyer, and C. Carbone, Phys. Rev. Lett. 88, 167205 (2002).

    Article  CAS  PubMed  ADS  Google Scholar 

  53. B. N. Harmon and A. J. Freeman, Phys. Rev. B 10, 1979 (1974).

    Article  CAS  ADS  Google Scholar 

  54. J. K. Lang, Y. Baer, and P. A. Cox, J. Phys. F: Metal Phys. 11, 121 (1981).

    Article  CAS  ADS  Google Scholar 

  55. A. B. Shick, A. I. Liechtenstein, and W. E. Pickett, Phys. Rev. B 60, 10763 (1999).

    Article  CAS  ADS  Google Scholar 

  56. A. B. Shick, W. E. Pickett, and C. S. Fadley, Phys. Rev. B 61, 9213 (2000).

    Article  ADS  Google Scholar 

  57. G. B. Ph. Kurz and S. Blügel, J. Phys.: Condens Matter 14, 6353 (2002).

    Article  CAS  ADS  Google Scholar 

  58. A. J. Freeman, Magnetic Properties of Rare Earth Metals, chap. 6, ed. R. J. Elliott (Plenum, London, 1972).

    Google Scholar 

  59. K. Maiti, M. C. Malagoli, E. Magnano, A. Dallmeyer, and C. Carbone, Phys. Rev. Lett. 86, 2846 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  60. J. Jensen and A. R. Mackintosh, Rare Earth Magnetism (Clarendon Press, Oxford, 1991).

    Google Scholar 

  61. H. Skriver, The LMTO Method (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  62. F. Leuenberger, A. Parge, W. Felsch, K. Fauth, and M. Hessler, Phys. Rev. B 72, 14427 (2005).

    Article  ADS  CAS  Google Scholar 

  63. P. Larson and W. R. L. Lambrecht, Phys. Rev. B 75, 45114 (2007).

    Article  ADS  CAS  Google Scholar 

  64. O. Bengone, M. Alouani, P. Blöchl, and J. Hugel, Phys. Rev. B 62, 16392 (2000).

    Article  CAS  ADS  Google Scholar 

  65. D. Singh, Phys. Rev. B 43, 6388 (1991).

    Article  CAS  ADS  Google Scholar 

  66. J. C. Slater, The Self-Consistent Field of Molecules and solids, vol. 4 (McGraw-Hill, New York, 1974).

    Google Scholar 

  67. F. Aryasetiawan and O. Gunnarsson, Phys. Rev. B 54, 17564 (1996).

    Article  CAS  ADS  Google Scholar 

  68. A. R. Makintosh and O. K. Andersen, Electron at the Fermi Surface, ed. M. Springford (Cambridge University Press, Cambridge, 1980).

    Google Scholar 

  69. G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans, Phys. Rev. B 41, 11919 (1990).

    Article  CAS  ADS  Google Scholar 

  70. D.-S. Wang, R. Wu, and A. J. Freeman, Phys. Rev. Lett. 70, 869 (1993).

    Article  CAS  PubMed  ADS  Google Scholar 

  71. X. Wang, R. Wu, D.-S. Wang, and A. J. Freeman, Phys. Rev. B 54, 61 (1996).

    Article  CAS  ADS  Google Scholar 

  72. J. H. van Vleck, Phys. Rev. 52, 1178 (1937).

    Article  ADS  Google Scholar 

  73. I. G. P. M. Oppneer, P. Ravindran, L. Nordström, P. James, M. Alouani, H. Dreyssé, and O. Eriksson, Phys. Rev. B 63, 172405 (2001).

    Article  ADS  CAS  Google Scholar 

  74. J. J. M. Franse and R. Gersdorf, Phys. Rev. Lett. 45, 50 (1980).

    Article  CAS  ADS  Google Scholar 

  75. M. J. Gillan, J. Phys.: Condens Matter 1, 689 (1981).

    Article  ADS  Google Scholar 

  76. S. Abdelouahed, N. Baadji, and M. Alouani, Phys. Rev. B 75, 094428 (2007).

    Article  ADS  CAS  Google Scholar 

  77. M. Colarieti-Tosti, S. I. Simak, R. Ahuja, L. Nordström, O. Eriksson, D. Aberg, S. Edvardsson, and M. S. S. Brooks, Phys. Rev. Lett. 91, 157201 (2003).

    Article  CAS  PubMed  ADS  Google Scholar 

  78. P. Bruno, Phys. Rev. B 39, 865 (1989).

    Article  ADS  Google Scholar 

  79. G. van der Laan, J. Phys.: Condens Matter 10, 3239 (1998).

    Article  ADS  Google Scholar 

  80. S. Abdelouahed and M. Alouani, Phys. Rev. B 76, 214409 (2007).

    Article  ADS  CAS  Google Scholar 

  81. http://www.fleur.de

  82. D. R. Hamann, Phys. Rev. Lett. 42, 662 (1979).

    Article  CAS  ADS  Google Scholar 

  83. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981).

    Article  CAS  ADS  Google Scholar 

  84. B. Thole, P. Carra, F. Sette, and G. van der Laan, Phys. Rev. Lett. 68, 1943 (1992).

    Article  CAS  PubMed  ADS  Google Scholar 

  85. P. Carra, B. Thole, M. Altarelli, and X. Wang, Phys. Rev. Lett. 70, 694 (1993).

    Article  CAS  PubMed  ADS  Google Scholar 

  86. F. Leuenberger, A. Parge, W. Felsch, F. Baudelet, C. Giorgetti, E. Dartyge, and F. Wilhelm, Phys. Rev. B 73, 214430 (2006).

    Article  ADS  CAS  Google Scholar 

  87. J. Jenson and A. Mackintosh, Rare Earth Magnetism (Oxford University Press, Oxford, 1991).

    Google Scholar 

  88. V. N. Antonov, B. N. Harmon, A. N. Yaresko, and A. P. Shpak, Phys. Rev. B 75, 184422 (2007).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Alouani , N. Baadji , S. Abdelouahed , O. Bengone or H. Dreyssé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alouani, M., Baadji, N., Abdelouahed, S., Bengone, O., Dreyssé, H. (2010). Effect of Spin-Orbit Coupling on the Magnetic Properties of Materials: Results. In: Massobrio, C., Bulou, H., Goyhenex, C. (eds) Advances in the Atomic-Scale Modeling of Nanosystems and Nanostructured Materials. Lecture Notes in Physics, vol 795. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04650-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04650-6_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04649-0

  • Online ISBN: 978-3-642-04650-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics