Skip to main content

Calculating Tonal Fusion by the Generalized Coincidence Function

  • Conference paper
  • 2159 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 37))

Abstract

Models of pitch perception in the time domain suggest that the perception of pitch is extracted from neuronal pulse series by networks for periodicity detection. A neuronal mechanism for periodicity detection in the auditory system has been found in the inferior colliculus (Langner 1983). The present paper proposes a mathematical model to compute the degree of coincidence in the periodicity detection mechanism for musical intervals represented by pulse series. The purpose of this model is to study the logical structure of coincidence and to define a measure value for the degree of coincidence.

The model is purely mathematical but has a strong relation to physiological data presented by Langner. As the sensation of consonance depends mostly on pitch, frequency is the only parameter to be regarded in the model. The integration of other parameters and the adaptation to further physiological data should be easy but still lies ahead.

The model is a mathematical basis for a concept of consonance based on pitch perception models in the time domain. In contrast to the concept of the sensory consonance it does not refer to the percept of roughness, which nevertheless is important for the perceived pleasantness of consonances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aures, W.: Ein Berechnungsverfahren der Rauhigkeit. Acustica 58, 268–281 (1985)

    Google Scholar 

  • Aures, W.: Der sensorische Wohlklang als Funktion psychoakustischer Empfindungsgrößen. Acustica 58, 282–290 (1985)

    Google Scholar 

  • Cariani, P.A., Delgutte, B.: Neural Correlates of the Pitch of Complex Tones. Journal of Neurophysiology 76(3), 1698–1734 (1996)

    Google Scholar 

  • de Cheveigné, A.: Pitch perception models. In: Plack, C., Fay, R.R., Oxenham, A.J., Popper, A.N. (eds.) Pitch — Neural Coding and Perception, pp. 169–233. Springer, New York (2005)

    Google Scholar 

  • Ebeling, M.: Verschmelzung und neuronale Autokorrelation als Grundlage einer Konsonanztheorie. Peter Lang Verlag, Frankfurt a. M. (2007)

    Google Scholar 

  • Goldstein Julius, L., Scrulovic, P.: Auditory-nerve spike intervals as an adequate basis for aural spectrum analysis. In: Evans, E.F. (ed.) Psychophysics and Physiology of Hearing, pp. 337–345. Academic, London (1977)

    Google Scholar 

  • Hartmann, W.M.: Signal, Sound, and Sensation. Springer, New York (2000)

    Google Scholar 

  • v. Helmholtz, H.: On the sensations of tone. Tr. Ellis, Alexander J. Dover, New York (1885); reprint 1954

    Google Scholar 

  • Hesse, H.-P.: Musik und Emotion. Wissenschaftliche Grundlagen des Musik-Erlebens. Springer, Wien (2003)

    Google Scholar 

  • Kaernbach, C., Demany, L.: Psychophysical evidence against the autocorrelation theory of auditory temporal processing. Journal of the Acoustical Society of America 104(4), 2298–2306 (1998)

    Article  Google Scholar 

  • Kameoka, A., Kuriyagawa, M.: Consonance Theory. Journal of the Acoustical Society of America 45(6), 1451–1469 (1969)

    Article  Google Scholar 

  • Langner, G.: Evidence for neuronal periodicity detection in the auditory system of the guinea fowl implications for pitch analysis in the time domain. Experimental Brain Research 52, 333–355 (1983)

    Article  Google Scholar 

  • Langner, G.: Neuronal mechanisms underlying the perception of pitch and harmony. Annals of the New York Academy of sciences 1060, 50–52 (2005)

    Article  Google Scholar 

  • Langner, G.: Temporal Processing of Periodic Signals in the Auditory System: Neuronal Representation of Pitch, Timbre, and Harmonicity. Zeitschrift für Audiologie 46(1), 8–21 (2007)

    Google Scholar 

  • Langner, G., Schreiner, C.E.: Periodicity Coding in the Inferior Colliculus of the Cat. Journal of Neurophysiology 60(6), 1799–1822 (1988)

    Google Scholar 

  • Licklider, J.C.R.: A Duplex Theory of Pitch Perception. Experimenta VII/4, 128–134 (1951)

    Article  Google Scholar 

  • Meddis, R., Hewitt, M.J.: Virtual pitch and phase sensitivity of a computer model of the auditory periphery. Journal of the Acoustical Society of America 89(6), 2866–2894 (1991)

    Article  Google Scholar 

  • Papoulis, A.: The Fourier Integral And Its Applications. McGraw-Hill, New York (1962)

    MATH  Google Scholar 

  • Parncutt, R.: Harmony. A psychoacoustic approach. Springer, Berlin (1989)

    Google Scholar 

  • Parncutt, R.: A model of the percetual root(s) of a chord accounting for voicing and prevailing tonality. In: Leman, M. (ed.) Music, gestalt, and computing — Studies in cognitive and systematic musicology, pp. 181–199. Springer, Berlin (1997)

    Google Scholar 

  • Patterson, R.D., Allerhand, M.H., Giguère, C.: Time-domain modelling of peripheral auditory processing: A modular architecture and a software platform. Journal of the Acoustical Society of America 98(4), 1890–1894 (1995)

    Article  Google Scholar 

  • Plomp, R., Levelt, W.J.D.: Tonal consonance and critical bandwidth. Journal of the Acoustical Society of America 35, 548–560 (1965)

    Article  Google Scholar 

  • Rhode, W.S.: Interspike intervals as correlate of periodicity pitch in cat cochlear nucleus. Journal of the Acoustical Society of America 97(4), 2414–2429 (1995)

    Article  Google Scholar 

  • Stumpf, C.: Tonpsychologie. Knuf, Hilversum (1890); reprint (1965)

    Google Scholar 

  • Terhardt, E.: On the Perception of Periodic Sound fluctuations (Roughness). Acustica 30, 201–213 (1974)

    Google Scholar 

  • Terhardt, E.: Ein psychoakustisch begründetes Konzept der Musikalischen Konsonanz. Acustica 36, 121–137 (1976/1977)

    Google Scholar 

  • Tramo, M.J., Cariani, P.A., Delgutte, B., Braida, L.D.: Neurobiological Foundations for the Theory of Harmony in Western Tonal Music. In: Zatorre, R.J., Peretz, I. (eds.) The Biological Foundations of Music. Annals of the New York Academy of Sciences, vol. 930, pp. 92–116 (2001)

    Google Scholar 

  • Voutsas, K., Langner, G., Adamy, J., Ochse, M.A.: A brain-like neural network for periodicity analysis. IEEE Trans. Syst. Man Cybern. B: Cybern. 35, 12–22 (2005)

    Article  Google Scholar 

  • Wever, E.G.: Theory of Hearing. Wiley, New York (1949); reprint 1965

    Google Scholar 

  • Wiener, N.: Generalized Harmonic Analysis. Acta Mathematica 55, 117–258 (1930)

    Article  MATH  MathSciNet  Google Scholar 

  • Yost, W.A., Patterson, R., Sheft, S.: A time domain description for the pitch strength of iterated rippled noise. Journal of the Acoustical Society of America 99(2), 1066–1077 (1996)

    Article  Google Scholar 

  • Zhang, X., Heinz, M.G., Bruce, I.C., Carney, L.H.: A phenomenological model for the responses of auditory-nerve fibers. I. Nonlinear tuning with compression and suppression. Journal of the Acoustical Society of America 109(2), 648–670 (2001)

    Article  Google Scholar 

  • Zwicker, E., Fastl, H.: Psychoacoustics. Springer, Berlin (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ebeling, M. (2009). Calculating Tonal Fusion by the Generalized Coincidence Function. In: Klouche, T., Noll, T. (eds) Mathematics and Computation in Music. MCM 2007. Communications in Computer and Information Science, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04579-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04579-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04578-3

  • Online ISBN: 978-3-642-04579-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics