Advances in Information Retrieval Theory

Volume 5766 of the series Lecture Notes in Computer Science pp 116-127

An Effective Approach to Verbose Queries Using a Limited Dependencies Language Model

  • Eduard HoenkampAffiliated withUniversity of Maastricht
  • , Peter BruzaAffiliated withQueensland University of Technology
  • , Dawei SongAffiliated withRobert Gordon University
  • , Qiang HuangAffiliated withRobert Gordon University

* Final gross prices may vary according to local VAT.

Get Access


Intuitively, any ‘bag of words’ approach in IR should benefit from taking term dependencies into account. Unfortunately, for years the results of exploiting such dependencies have been mixed or inconclusive. To improve the situation, this paper shows how the natural language properties of the target documents can be used to transform and enrich the term dependencies to more useful statistics. This is done in three steps. The term co-occurrence statistics of queries and documents are each represented by a Markov chain. The paper proves that such a chain is ergodic, and therefore its asymptotic behavior is unique, stationary, and independent of the initial state. Next, the stationary distribution is taken to model queries and documents, rather than their initial distributions. Finally, ranking is achieved following the customary language modeling paradigm. The main contribution of this paper is to argue why the asymptotic behavior of the document model is a better representation then just the document’s initial distribution. A secondary contribution is to investigate the practical application of this representation in case the queries become increasingly verbose. In the experiments (based on Lemur’s search engine substrate) the default query model was replaced by the stable distribution of the query. Just modeling the query this way already resulted in significant improvements over a standard language model baseline. The results were on a par or better than more sophisticated algorithms that use fine-tuned parameters or extensive training. Moreover, the more verbose the query, the more effective the approach seems to become.