Skip to main content

Oncologic Applications of Sestamibi: In Vivo Imaging of Multi-Drug Resistance

  • Chapter
  • First Online:
99mTc-Sestamibi
  • 745 Accesses

Abstract

Each year millions of new cancers are diagnosed, and chemotherapy remains the principal mode of treatment for many of them. Development of chemoresistance, first described in 1970, is a challenging obstacle during the treatment of local and disseminated malignancies and has been described as the single most common reason for discontinuation of a chemotherapeutic agent. The phenomenon of multi-drug resistance (MDR), as one of the major causes of chemotherapy failure, has been defined as the insensitivity of various tumors to a variety of chemically related or unrelated anti-neoplastic or cytotoxic agents, mediated by a process of inactivating the drug or removing it from the target tumor cells [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luqmani YA (2005) Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract 14(Suppl 1):35–48

    PubMed  Google Scholar 

  2. Georges E, Bradley G, Gariepy J, Ling V (1990) Detection of P-glycoprotein isoforms by gene-specific monoclonal antibodies. Proc Natl Acad Sci USA 87:152–156

    PubMed  CAS  Google Scholar 

  3. Rothenberg M, Ling V (1989) Multidrug resistance: molecular biology and clinical relevance. J Natl Cancer Inst 81:907–910

    PubMed  CAS  Google Scholar 

  4. Pichler A, Zelcer N, Prior JL, Kuil AJ, Piwnica-Worms D (2005) In vivo RNA interference-mediated ablation of MDR1 P-glycoprotein. Clin Cancer Res 11:4487–4494

    PubMed  CAS  Google Scholar 

  5. Ferry DR, Kerr DJ (1994) Multidrug resistance in cancer. BMJ 308:148–149

    PubMed  CAS  Google Scholar 

  6. Mohan HK, Miles KA (2009) Cost-effectiveness of 99mTc-sestamibi in predicting response to chemotherapy in patients with lung cancer: systematic review and meta-analysis. J Nucl Med 50:376–381

    PubMed  CAS  Google Scholar 

  7. Piwnica-Worms D, Chiu ML, Budding M, Kronauge JF, Kramer RA, Croop JM (1993) Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex. Cancer Res 53:977–984

    PubMed  CAS  Google Scholar 

  8. Perek N, Le Jeune N, Denoyer D, Dubois F (2005) MRP-1 protein expression and glutathione content of in vitro tumor cell lines derived from human glioma carcinoma U-87-MG do not interact with 99mTc-glucarate uptake. Cancer Biother Radiopharm 20:391–400

    PubMed  CAS  Google Scholar 

  9. Lorke DE, Kruger M, Buchert R, Bohuslavizki KH, Clausen M, Schumacher U (2001) In vitro and in vivo tracer characteristics of an established multidrug-resistant human colon cancer cell line. J Nucl Med 42:646–654

    PubMed  CAS  Google Scholar 

  10. Ballinger JR, Hua HA, Berry BW, Firby P, Boxen I (1995) 99Tcm-sestamibi as an agent for imaging P-glycoprotein-mediated multi-drug resistance: in vitro and in vivo studies in a rat breast tumour cell line and its doxorubicin-resistant variant. Nucl Med Commun 16:253–257

    PubMed  CAS  Google Scholar 

  11. Moretti JL, Duran Cordobes M, Starzec A et al (1998) Involvement of glutathione in loss of technetium-99m-MIBI accumulation related to membrane MDR protein expression in tumor cells. J Nucl Med 39:1214–1218

    PubMed  CAS  Google Scholar 

  12. Yamaguchi S, Yachiku S, Hashimoto H et al (2002) Relation between technetium 99m-methoxyisobutylisonitrile accumulation and multidrug resistance protein in the parathyroid glands. World J Surg 26:29–34

    PubMed  Google Scholar 

  13. Utsunomiya K, Ballinger JR, Piquette-Miller M et al (2000) Comparison of the accumulation and efflux kinetics of technetium-99m sestamibi and technetium-99m tetrofosmin in an MRP-expressing tumour cell line. Eur J Nucl Med 27:1786–1792

    PubMed  CAS  Google Scholar 

  14. Tsai SC, Shiau YC, Wang JJ, Ho YJ, Kao CH (2001) Comparison of the uptake and clearance of Tc-99m MIBI, Tl-201 and Ga-67 in drug-resistant lymphoma cell lines. Cancer Lett 171:147–152

    PubMed  CAS  Google Scholar 

  15. Marian T, Szabo G, Goda K et al (2003) In vivo and in vitro multitracer analyses of P-glycoprotein expression-related multidrug resistance. Eur J Nucl Med Mol Imaging 30:1147–1154

    PubMed  CAS  Google Scholar 

  16. Ballinger JR, Bannerman J, Boxen I, Firby P, Hartman NG, Moore MJ (1996) Technetium-99m-tetrofosmin as a substrate for P-glycoprotein: in vitro studies in multidrug-resistant breast tumor cells. J Nucl Med 37:1578–1582

    PubMed  CAS  Google Scholar 

  17. Piwnica-Worms D, Rao VV, Kronauge JF, Croop JM (1995) Characterization of multidrug resistance P-glycoprotein transport function with an organotechnetium cation. Biochemistry 34:12210–12220

    PubMed  CAS  Google Scholar 

  18. Cordobes MD, Starzec A, Delmon-Moingeon L et al (1996) Technetium-99m-sestamibi uptake by human benign and malignant breast tumor cells: correlation with mdr gene expression. J Nucl Med 37:286–289

    PubMed  CAS  Google Scholar 

  19. Ballinger JR, Sheldon KM, Boxen I, Erlichman C, Ling V (1995) Differences between accumulation of 99mTc-MIBI and 201Tl-thallous chloride in tumour cells: role of P-glycoprotein. Q J Nucl Med 39:122–128

    PubMed  CAS  Google Scholar 

  20. Gomes CM, Abrunhosa AJ, Pauwels EK, Botelho MF (2009) P-glycoprotein versus MRP1 on transport kinetics of cationic lipophilic substrates: a comparative study using [99mTc]sestamibi and [99mTc]tetrofosmin. Cancer Biother Radiopharm 24:215–227

    PubMed  CAS  Google Scholar 

  21. van Leeuwen FW, Buckle T, Kersbergen A, Rottenberg S, Gilhuijs KG (2009) Noninvasive functional imaging of P-glycoprotein-mediated doxorubicin resistance in a mouse model of hereditary breast cancer to predict response, and assign P-gp inhibitor sensitivity. Eur J Nucl Med Mol Imaging 36:406–412

    PubMed  Google Scholar 

  22. Bae KT, Piwnica-Worms D (1997) Pharmacokinetic modeling of multidrug resistance P-glycoprotein transport of gamma-emitting substrates. Q J Nucl Med 41:101–110

    PubMed  CAS  Google Scholar 

  23. Vecchio SD, Ciarmiello A, Potena MI et al (1997) In vivo detection of multidrug-resistant (MDR1) phenotype by technetium-99m sestamibi scan in untreated breast cancer patients. Eur J Nucl Med 24:150–159

    PubMed  CAS  Google Scholar 

  24. Salvatore M, Del Vecchio S (1998) Dynamic imaging: scintimammography. Eur J Radiol 27(Suppl 2):S259–S264

    PubMed  Google Scholar 

  25. Cayre A, Cachin F, Maublant J et al (2002) Single static view 99mTc-sestamibi scintimammography predicts response to neoadjuvant chemotherapy and is related to MDR expression. Int J Oncol 20:1049–1055

    PubMed  CAS  Google Scholar 

  26. Sergieva SB, Timcheva KV, Hadjiolov ND (2006) 99mTc-MIBI scintigraphy as a functional method for the evaluation of multidrug resistance in breast cancer patients. J BUON 11:61–68

    PubMed  CAS  Google Scholar 

  27. Liu Z, Stevenson GD, Barrett HH et al (2005) Imaging recognition of inhibition of multidrug resistance in human breast cancer xenografts using 99mTc-labeled sestamibi and tetrofosmin. Nucl Med Biol 32:573–583

    PubMed  CAS  Google Scholar 

  28. Liu Z, Stevenson GD, Barrett HH et al (2004) Imaging recognition of multidrug resistance in human breast tumors using 99mTc-labeled monocationic agents and a high-resolution stationary SPECT system. Nucl Med Biol 31:53–65

    PubMed  CAS  Google Scholar 

  29. Dirlik A, Burak Z, Goksel T et al (2002) The role of Tc-99m sestamibi imaging in predicting clinical response to chemotherapy in lung cancer. Ann Nucl Med 16:103–108

    PubMed  CAS  Google Scholar 

  30. Moretti JL, Caglar M, Boaziz C, Caillat-Vigneron N, Morere JF (1995) Sequential functional imaging with technetium-99m hexakis-2-methoxyisobutylisonitrile and indium-111 octreotide: Can we predict the response to chemotherapy in small cell lung cancer? Eur J Nucl Med 22:177–180

    PubMed  CAS  Google Scholar 

  31. Del Vecchio S, Ciarmiello A, Salvatore M (2000) Scintigraphic detection of multidrug resistance in cancer. Cancer Biother Radiopharm 15:327–337

    PubMed  Google Scholar 

  32. Chen WS, Luker KE, Dahlheimer JL, Pica CM, Luker GD, Piwnica-Worms D (2000) Effects of MDR1 and MDR3 P-glycoproteins, MRP1, and BCRP/MXR/ABCP on the transport of (99m)Tc-tetrofosmin. Biochem Pharmacol 60:413–426

    PubMed  CAS  Google Scholar 

  33. Muzzammil T, Moore MJ, Ballinger JR (2000) In vitro comparison of sestamibi, tetrofosmin, and furifosmin as agents for functional imaging of multidrug resistance in tumors. Cancer Biother Radiopharm 15:339–346

    PubMed  CAS  Google Scholar 

  34. Dyszlewski M, Blake HM, Dahlheimer JL, Pica CM, Piwnica-Worms D (2002) Characterization of a novel 99mTc-carbonyl complex as a functional probe of MDR1 P-glycoprotein transport activity. Mol Imaging 1:24–35

    PubMed  CAS  Google Scholar 

  35. Ballinger JR, Muzzammil T, Moore MJ (1997) Technetium-99m-furifosmin as an agent for functional imaging of multidrug resistance in tumors. J Nucl Med 38:1915–1919

    PubMed  CAS  Google Scholar 

  36. Rao VV, Herman LW, Kronauge JF, Piwnica-Worms D (1998) A novel areneisonitrile Tc complex inhibits the transport activity of MDR P-glycoprotein. Nucl Med Biol 25:225–232

    PubMed  CAS  Google Scholar 

  37. Crankshaw CL, Marmion M, Luker GD et al (1998) Novel technetium (III)-Q complexes for functional imaging of multidrug resistance (MDR1) P-glycoprotein. J Nucl Med 39:77–86

    PubMed  CAS  Google Scholar 

  38. Bergmann R, Brust P, Scheunemann M et al (2000) Assessment of the in vitro and in vivo properties of a (99m)Tc-labeled inhibitor of the multidrug resistant gene product P-glycoprotein. Nucl Med Biol 27:135–141

    PubMed  CAS  Google Scholar 

  39. Ballinger JR (2001) 99mTc-tetrofosmin for functional imaging of P-glycoprotein modulation in vivo. J Clin Pharmacol 41(Suppl):39S–47S

    CAS  Google Scholar 

  40. Yokogami K, Kawano H, Moriyama T et al (1998) Application of SPET using technetium-99m sestamibi in brain tumours and comparison with expression of the MDR-1 gene: Is it possible to predict the response to chemotherapy in patients with gliomas by means of 99mTc-sestamibi SPET? Eur J Nucl Med 25:401–409

    PubMed  CAS  Google Scholar 

  41. Hendrikse NH (2000) Monitoring interactions at ATP-dependent drug efflux pumps. Curr Pharm Des 6:1653–1668

    PubMed  CAS  Google Scholar 

  42. Lewis JS, Dearling JL, Sosabowski JK et al (2000) Copper bis(diphosphine) complexes: radiopharmaceuticals for the detection of multi-drug resistance in tumours by PET. Eur J Nucl Med 27:638–646

    PubMed  CAS  Google Scholar 

  43. Kabasakal L, Ozker K, Hayward M et al (1996) Technetium-99m sestamibi uptake in human breast carcinoma cell lines displaying glutathione-associated drug-resistance. Eur J Nucl Med 23:568–570

    PubMed  Google Scholar 

  44. Del Vecchio S, Ciarmiello A, Pace L et al (1997) Fractional retention of technetium-99m-sestamibi as an index of P-glycoprotein expression in untreated breast cancer patients. J Nucl Med 38:1348–1351

    PubMed  Google Scholar 

  45. Muzzammil T, Ballinger JR, Moore MJ (1999) 99Tcm-sestamibi imaging of inhibition of the multidrug resistance transporter in a mouse xenograft model of human breast cancer. Nucl Med Commun 20:115–122

    PubMed  CAS  Google Scholar 

  46. Kostakoglu L, Elahi N, Kiratli P et al (1997) Clinical validation of the influence of P-glycoprotein on technetium-99m-sestamibi uptake in malignant tumors. J Nucl Med 38:1003–1008

    PubMed  CAS  Google Scholar 

  47. Sun SS, Hsieh JF, Tsai SC, Ho YJ, Kao CH (2000) Expression of drug resistance protein related to Tc-99m MIBI breast imaging. Anticancer Res 20:2021–2025

    PubMed  CAS  Google Scholar 

  48. Sun SS, Hsieh JF, Tsai SC, Ho YJ, Lee JK, Kao CH (2000) Expression of mediated P-glycoprotein multidrug resistance related to Tc-99m MIBI scintimammography results. Cancer Lett 153:95–100

    PubMed  CAS  Google Scholar 

  49. Kao CH, Tsai SC, Liu TJ et al (2001) P-Glycoprotein and multidrug resistance-related protein expressions in relation to technetium-99m methoxyisobutylisonitrile scintimammography findings. Cancer Res 61:1412–1414

    PubMed  CAS  Google Scholar 

  50. Alonso O, Delgado L, Nunez M et al (2002) Predictive value of (99m)Tc sestamibi scintigraphy in the evaluation of doxorubicin based chemotherapy response in patients with advanced breast cancer. Nucl Med Commun 23:765–771

    PubMed  CAS  Google Scholar 

  51. Kim R, Osaki A, Hirai T, Toge T (2002) Utility of technetium-99m methoxyisobutyl isonitrile uptake analysis for prediction of the response to chemotherapy in advanced and relapsed breast cancer. Breast Cancer 9:240–247

    PubMed  Google Scholar 

  52. Baena-Canada JM, Partida-Palma F, Palomo-Gonzalez MJ, Benitez E, Rueda-Ramos A, Garcia-Curiel A (2005) Evaluation of response to neoadjuvant chemotherapy using breast scintigraphy in breast cancer. Med Clin Barc 125:601–605

    PubMed  Google Scholar 

  53. Fujii H, Nakamura K, Kubo A et al (1998) Preoperative evaluation of the chemosensitivity of breast cancer by means of double phase 99mTc-MIBI scintimammography. Ann Nucl Med 12:307–312

    PubMed  CAS  Google Scholar 

  54. Cui SD, Liu ZZ, Liu H, Li LF, Yang H, Li WL (2005) The relationship between 99mTc-MIBI scintimammography of breast cancer and multidrug-resistant proteins. Zhonghua Zhong Liu Za Zhi 27:606–608

    PubMed  Google Scholar 

  55. Mubashar M, Harrington KJ, Chaudhary KS et al (2002) 99mTc-sestamibi imaging in the assessment of toremifene as a modulator of multidrug resistance in patients with breast cancer. J Nucl Med 43:519–525

    PubMed  CAS  Google Scholar 

  56. Kim IJ, Bae YT, Kim SJ, Kim YK, Kim DS, Lee JS (2006) Determination and prediction of P-glycoprotein and multidrug-resistance-related protein expression in breast cancer with double-phase technetium-99m sestamibi scintimammography. Visual and quantitative analyses. Oncology 70:403–410

    PubMed  CAS  Google Scholar 

  57. Yamamoto Y, Nishiyama Y, Fukunaga K, Satoh K, Fujita J, Ohkawa M (2001) 99mTc-MIBI SPECT in small cell lung cancer patients before chemotherapy and after unresponsive chemotherapy. Ann Nucl Med 15:329–335

    PubMed  CAS  Google Scholar 

  58. Yüksel M, Cermik TF, Karlikaya C et al (2001) Monitoring the chemotherapeutic response in primary lung cancer using 99mTc-MIBI SPET. Eur J Nucl Med Mol Imaging 28:799–806

    Google Scholar 

  59. Yüksel M, Cermik TF, Doğanay L et al (2002) 99mTc-MIBI SPET in non-small cell lung cancer in relationship with Pgp and prognosis. Eur J Nucl Med Mol Imaging 29:876–881

    PubMed  Google Scholar 

  60. Kao A, Shiun SC, Hsu NY, Sun SS, Lee CC, Lin CC (2001) Technetium-99m methoxyisobutylisonitrile chest imaging for small-cell lung cancer: relationship to chemotherapy response (six courses of combination of cisplatin and etoposide) and p-glycoprotein or multidrug resistance related protein expression. Ann Oncol 12:1561–1566

    PubMed  CAS  Google Scholar 

  61. Nishiyama Y, Yamamoto Y, Satoh K et al (2000) Comparative study of Tc-99m MIBI and Tl-201 SPECT in predicting chemotherapeutic response in non-small-cell lung cancer. Clin Nucl Med 25:364–369

    PubMed  CAS  Google Scholar 

  62. Kao CH, Hsieh JF, Tsai SC, Ho YJ, Lee JK (2000) Quickly predicting chemotherapy response to paclitaxel-based therapy in non-small cell lung cancer by early technetium-99m methoxyisobutylisonitrile chest single-photon-emission computed tomography. Clin Cancer Res 6:820–824

    PubMed  CAS  Google Scholar 

  63. Ceriani L, Giovanella L, Bandera M, Beghe B, Ortelli M, Roncari G (1997) Semiquantitative assessment of 99Tcm-sestamibi uptake in lung cancer: relationship with clinical response to chemotherapy. Nucl Med Commun 18:1087–1097

    PubMed  CAS  Google Scholar 

  64. Bom HS, Lim SC, Kim YC et al (1999) Dipyridamole modulated Tc-99m sestamibi lung SPECT in small cell lung cancer. Clin Nucl Med 24:97–101

    PubMed  CAS  Google Scholar 

  65. Kostakoglu L, Kiratli P, Ruacan S et al (1998) Association of tumor washout rates and accumulation of technetium-99m-MIBI with expression of P-glycoprotein in lung cancer. J Nucl Med 39:228–234

    PubMed  CAS  Google Scholar 

  66. Bom HS, Kim YC, Song HC, Min JJ, Kim JY, Park KO (1998) Technetium-99m-MIBI uptake in small cell lung cancer. J Nucl Med 39:91–94

    PubMed  CAS  Google Scholar 

  67. Kao CH, ChangLai SP, Chieng PU, Yen TC (1998) Technetium-99m methoxyisobutylisonitrile chest imaging of small cell lung carcinoma: relation to patient prognosis and chemotherapy response–a preliminary report. Cancer 83:64–68

    PubMed  CAS  Google Scholar 

  68. Shih CM, Hsu WH, Huang WT, Wang JJ, Ho ST, Kao A (2003) Usefulness of chest single photon emission computed tomography with technetium-99m methoxyisobutylisonitrile to predict taxol based chemotherapy response in advanced non-small cell lung cancer. Cancer Lett 199:99–105

    PubMed  CAS  Google Scholar 

  69. Koukourakis MI, Koukouraki S, Giatromanolaki A, Skarlatos J, Georgoulias V, Karkavitsas N (1997) Non-small cell lung cancer functional imaging: increased hexakis-2-methoxy-isobutyl-isonitrile tumor clearance correlates with resistance to cytotoxic treatment. Clin Cancer Res 3:749–754

    PubMed  CAS  Google Scholar 

  70. Zhou J, Higashi K, Ueda Y et al (2001) Expression of multidrug resistance protein and messenger RNA correlate with (99m)Tc-MIBI imaging in patients with lung cancer. J Nucl Med 42:1476–1483

    PubMed  CAS  Google Scholar 

  71. Ak I, Gulbas Z, Ocak S et al (2007) TC-99m MIBI SPECT imaging in patients with lung carcinoma: Is it a functional probe of multidrug resistance genes? J Comput Assist Tomogr 31:795–799

    PubMed  Google Scholar 

  72. Sasajima T, Shimada N, Naitoh Y et al (2007) (99m)Tc-MIBI imaging for prediction of therapeutic effects of second-generation MDR1 inhibitors in malignant brain tumors. Int J Cancer 121:2637–2645

    PubMed  CAS  Google Scholar 

  73. Andrews DW, Das R, Kim S, Zhang J, Curtis M (1997) Technetium-MIBI as a glioma imaging agent for the assessment of multi-drug resistance. Neurosurgery 40:1323–1332, discussion 33–34

    PubMed  CAS  Google Scholar 

  74. Shibata Y, Matsumura A, Nose T (2002) Effect of expression of P-glycoprotein on technetium-99m methoxyisobutylisonitrile single photon emission computed tomography of brain tumors. Neurol Med Chir Tokyo 42:325–330, discussion 30–31

    PubMed  Google Scholar 

  75. Hau P, Fabel K, Baumgart U et al (2004) Pegylated liposomal doxorubicin-efficacy in patients with recurrent high-grade glioma. Cancer 100:1199–1207

    PubMed  CAS  Google Scholar 

  76. Kunishio K, Morisaki K, Matsumoto Y, Nagao S, Nishiyama Y (2003) Technetium-99m sestamibi single photon emission computed tomography findings correlated with P-glycoprotein expression, encoded by the multidrug resistance gene-1 messenger ribonucleic acid, in intracranial meningiomas. Neurol Med Chir Tokyo 43:573–580, discussion 81

    PubMed  Google Scholar 

  77. Kunishio K, Okada M, Matsumoto Y, Nagao S, Nishiyama Y (2006) Technetium-99m sestamibi single photon emission computed tomography findings correlated with P-glycoprotein expression in pituitary adenoma. J Med Invest 53:285–291

    PubMed  Google Scholar 

  78. Kao CH, Tsai SC, Wang JJ, Ho YJ, Ho ST, Changlai SP (2001) Technetium-99m-sestamethoxyisobutylisonitrile scan as a predictor of chemotherapy response in malignant lymphomas compared with P-glycoprotein expression, multidrug resistance-related protein expression and other prognosis factors. Br J Haematol 113:369–374

    PubMed  CAS  Google Scholar 

  79. Qiao SK, Guo XN, Wang Y, Xu SR (2007) The clinical value of the 99Tcm-MIBI imaging in predicting the prognosis of malignant lymphoma. Zhonghua Yi Xue Za Zhi 87:2003–2006

    PubMed  CAS  Google Scholar 

  80. Shih WJ, Rastogi A, Stipp V, Magoun S, Coupal J (1998) Functional retention of Tc-99m MIBI in mediastinal lymphomas as a predictor of chemotherapeutic response demonstrated by consecutive thoracic SPECT imaging. Clin Nucl Med 23:505–508

    PubMed  CAS  Google Scholar 

  81. Kostakoglu L (2002) Noninvasive detection of multidrug resistance in patients with hematological malignancies: Are we there yet? Clin Lymphoma 2:242–248

    PubMed  CAS  Google Scholar 

  82. Ak I, Aslan V, Vardareli E, Gulbas Z (2003) Assessment of the P-glycoprotein expression by 99mTc-MIBI bone marrow imaging in patients with untreated leukaemia. Nucl Med Commun 24:397–402

    PubMed  CAS  Google Scholar 

  83. Pace L, Catalano L, Del Vecchio S et al (2005) Washout of [99mTc] sestamibi in predicting response to chemotherapy in patients with multiple myeloma. Q J Nucl Med Mol Imaging 49:281–285

    PubMed  CAS  Google Scholar 

  84. Fallahi B, Beiki D, Mousavi SA et al (2009) 99mTc-MIBI whole body scintigraphy and P-glycoprotein for the prediction of multiple drug resistance in multiple myeloma patients. Hell J Nucl Med 12:255–259

    PubMed  Google Scholar 

  85. Fonti R, Del Vecchio S, Zannetti A et al (2004) Functional imaging of multidrug resistant phenotype by 99mTc-MIBI scan in patients with multiple myeloma. Cancer Biother Radiopharm 19:165–170

    PubMed  CAS  Google Scholar 

  86. Leitha T, Glaser C, Lang S (1998) Is early sestamibi imaging in head and neck cancer affected by MDR status, p53 expression, or cell proliferation? Nucl Med Biol 25:539–541

    PubMed  CAS  Google Scholar 

  87. Burak Z, Yuksel DA, Cetingul N, Kantar M, Ozkilic H, Moretti JL (1999) The role of 99Tcm-sestamibi scintigraphy in the staging and prediction of the therapeutic response of stage IV neuroblastoma: comparison with 131I-MIBG and 99Tcm-MDP scintigraphy. Nucl Med Commun 20:991–1000

    PubMed  CAS  Google Scholar 

  88. De Moerloose B (2005) The prognostic significance of P-glycoprotein in children with acute lymphoblastic leukemia and neuroblastoma. Verh K Acad Geneeskd Belg 67:45–54

    PubMed  Google Scholar 

  89. Ozcan Z, Erenel G, Aksoylar S, Kansoy S, Burak Z, Ozkilic H (1999) False-negative scintigraphy with Tc-99m sestamibi in stage IV neuroblastoma. Clin Nucl Med 24:267–270

    PubMed  CAS  Google Scholar 

  90. Han Y, Chen XP, Huang ZY, Zhu H (2005) Nude mice multi-drug resistance model of orthotopic transplantation of liver neoplasm and Tc-99m MIBI SPECT on p-glycoprotein. World J Gastroenterol 11:3335–3338

    PubMed  Google Scholar 

  91. Chang CS, Yang SS, Yeh HZ, Kao CH, Chen GH (2004) Tc-99m MIBI liver imaging for hepatocellular carcinoma: correlation with P-glycoprotein-multidrug-resistance gene expression. Hepatogastroenterology 51:211–214

    PubMed  Google Scholar 

  92. Kawata K, Kanai M, Sasada T, Iwata S, Yamamoto N, Takabayashi A (2004) Usefulness of 99mTc-sestamibi scintigraphy in suggesting the therapeutic effect of chemotherapy against gastric cancer. Clin Cancer Res 10:3788–3793

    PubMed  CAS  Google Scholar 

  93. Kim YS, Cho SW, Lee KJ et al (1999) Tc-99m MIBI SPECT is useful for noninvasively predicting the presence of MDR1 gene-encoded P-glycoprotein in patients with hepatocellular carcinoma. Clin Nucl Med 24:874–879

    PubMed  CAS  Google Scholar 

  94. Burak Z, Ersoy O, Moretti JL et al (2001) The role of 99mTc-MIBI scintigraphy in the assessment of MDR1 overexpression in patients with musculoskeletal sarcomas: comparison with therapy response. Eur J Nucl Med 28:1341–1350

    PubMed  CAS  Google Scholar 

  95. Burak Z, Moretti JL, Ersoy O et al (2003) 99mTc-MIBI imaging as a predictor of therapy response in osteosarcoma compared with multidrug resistance-associated protein and P-glycoprotein expression. J Nucl Med 44:1394–1401

    PubMed  CAS  Google Scholar 

  96. Gomes CM, Welling M, Que I et al (2007) Functional imaging of multidrug resistance in an orthotopic model of osteosarcoma using 99mTc-sestamibi. Eur J Nucl Med Mol Imaging 34:1793–1803

    PubMed  CAS  Google Scholar 

  97. Gorlick R, Liao AC, Antonescu C et al (2001) Lack of correlation of functional scintigraphy with (99m)technetium-methoxyisobutylisonitrile with histological necrosis following induction chemotherapy or measures of P-glycoprotein expression in high-grade osteosarcoma. Clin Cancer Res 7:3065–3070

    PubMed  CAS  Google Scholar 

  98. Moretti JL, Hauet N, Caglar M, Rebillard O, Burak Z (2005) To use MIBI or not to use MIBI? That is the question when assessing tumour cells. Eur J Nucl Med Mol Imaging 32:836–842

    PubMed  Google Scholar 

  99. Pusztai L, Wagner P, Ibrahim N et al (2005) Phase II study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breast carcinoma. Cancer 104:682–691

    PubMed  CAS  Google Scholar 

  100. Fuster D, Vinolas N, Mallafre C, Pavia J, Martin F, Pons F (2003) Tetrofosmin as predictors of tumour response. Q J Nucl Med 47:58–62

    PubMed  CAS  Google Scholar 

  101. Gruber A, Arestrom I, Xu D, Liliemark J, Larsson SA, Jacobsson H (1998) Multidrug resistance phenotype in leukaemic cells from patients with acute myelocytic leukaemia can be detected with 99Tc(m)-MIBI. Br J Cancer 77:1732–1736

    PubMed  CAS  Google Scholar 

  102. Bates SF, Chen C, Robey R, Kang M, Figg WD, Fojo T (2002) Reversal of multidrug resistance: lessons from clinical oncology. Novartis Found Symp 243:83–96, discussion 102, 80–85

    PubMed  CAS  Google Scholar 

  103. Jekerle V, Wang JH, Scollard DA, Reilly RM, Wiese M, Piquette-Miller M (2006) 99mTc-Sestamibi, a sensitive probe for in vivo imaging of P-glycoprotein inhibition by modulators and mdr1 antisense oligodeoxynucleotides. Mol Imaging Biol 8:333–339

    PubMed  Google Scholar 

  104. Tatsumi M, Tsuruo T, Nishimura T (2002) Evaluation of MS-209, a novel multidrug-resistance-reversing agent, in tumour-bearing mice by technetium-99m-MIBI imaging. Eur J Nucl Med Mol Imaging 29:288–294

    PubMed  CAS  Google Scholar 

  105. Chen CC, Meadows B, Regis J et al (1997) Detection of in vivo P-glycoprotein inhibition by PSC 833 using Tc-99m sestamibi. Clin Cancer Res 3:545–552

    PubMed  CAS  Google Scholar 

  106. Tunggal JK, Melo T, Ballinger JR, Tannock IF (2000) The influence of expression of P-glycoprotein on the penetration of anticancer drugs through multicellular layers. Int J Cancer 86:101–107

    PubMed  CAS  Google Scholar 

  107. Cayre A, Moins N, Finat-Duclos F, Verrelle P, Maublant J (1997) Comparison between technetium-99m-sestamibi and hydrogen-3-daunomycin myocardial cellular retention in vitro. J Nucl Med 38:1674–1677

    PubMed  CAS  Google Scholar 

  108. Del Vecchio S, Ciarmiello A, Salvatore M (1999) Clinical imaging of multidrug resistance in cancer. Q J Nucl Med 43:125–131

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Gholamrezanezhad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gholamrezanezhad, A. (2012). Oncologic Applications of Sestamibi: In Vivo Imaging of Multi-Drug Resistance. In: Bucerius, J., Ahmadzadehfar, H., Biersack, HJ. (eds) 99mTc-Sestamibi. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04233-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04233-1_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04232-4

  • Online ISBN: 978-3-642-04233-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics