Skip to main content

Tc-99m Sestamibi in Miscellaneous Tumors

  • Chapter
  • First Online:
  • 756 Accesses

Abstract

Lung cancer is the leading cause of cancer-related mortality. The single most important cause of lung cancer is smoking. The other risk factors include radiation therapy to the breast or chest and exposure to second-hand smoke, radon, arsenic, asbestos, and chromates [1]. The 5-year relative survival rate varies markedly depending on the stage at diagnosis. To facilitate treatment and prognostic decisions, lung cancer is broadly classified into two types: small cell lung cancers (SCLC) and non-small cell lung cancers (NSCLC).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wingo PA et al (1999) Annual report to the nation on the status of cancer, 1973–1996, with a special section on lung cancer and tobacco smoking. J Natl Cancer Inst 91(8):675–690

    Article  PubMed  CAS  Google Scholar 

  2. Webb WR et al (1991) CT and MR imaging in staging non-small cell bronchogenic carcinoma: report of the Radiologic Diagnostic Oncology Group. Radiology 178(3):705–713

    PubMed  CAS  Google Scholar 

  3. Salathe M et al (1992) Transbronchial needle aspiration in routine fiberoptic bronchoscopy. Respiration 59(1):5–8

    Article  PubMed  CAS  Google Scholar 

  4. Gould MK et al (2001) Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 285(7):914–924

    Article  PubMed  CAS  Google Scholar 

  5. van Tinteren H et al (2002) Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet 359(9315):1388–1393

    Article  PubMed  Google Scholar 

  6. Kapucu LO et al (1998) Fluorine-18-fluorodeoxyglucose uptake in pneumonia. J Nucl Med 39(7):1267–1269

    PubMed  CAS  Google Scholar 

  7. Higashi K et al (1998) Fluorine-18-FDG PET imaging is negative in bronchioloalveolar lung carcinoma. J Nucl Med 39(6):1016–1020

    PubMed  CAS  Google Scholar 

  8. Beller GA, Watson DD (1991) Physiological basis of myocardial perfusion imaging with the technetium 99m agents. Semin Nucl Med 21(3):173–181

    Article  PubMed  CAS  Google Scholar 

  9. Schomacker K, Schicha H (2000) Use of myocardial imaging agents for tumour diagnosis–A success story? Eur J Nucl Med 27(12):1845–1863

    Article  PubMed  CAS  Google Scholar 

  10. Yokoi K et al (1994) Mediastinal lymph node metastasis from lung cancer: evaluation with Tl-201 SPECT–comparison with CT. Radiology 192(3):813–817

    PubMed  CAS  Google Scholar 

  11. Tonami N et al (1991) 201Tl SPECT in the detection of mediastinal lymph node metastases from lung cancer. Nucl Med Commun 12(9):779–792

    Article  PubMed  CAS  Google Scholar 

  12. Piwnica-Worms D et al (1993) Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex. Cancer Res 53(5):977–984

    PubMed  CAS  Google Scholar 

  13. Nosotti M et al (2002) Role of (99m)tc-hexakis-2-methoxy-isobutylisonitrile in the diagnosis and staging of lung cancer. Chest 122(4):1361–1364

    Article  PubMed  Google Scholar 

  14. Minai OA et al (2000) Role of Tc-99m MIBI in the evaluation of single pulmonary nodules: a preliminary report. Thorax 55(1):60–62

    Article  PubMed  CAS  Google Scholar 

  15. Kao CH et al (1993) Differentiation of single solid lesions in the lungs by means of single-photon emission tomography with technetium-99m methoxyisobutylisonitrile. Eur J Nucl Med 20(3):249–254

    Article  PubMed  CAS  Google Scholar 

  16. Mountain CF (2000) The international system for staging lung cancer. Semin Surg Oncol 18(2):106–115

    Article  PubMed  CAS  Google Scholar 

  17. Friedman PJ (1992) Lung cancer staging: efficacy of CT. Radiology 182(2):307–309

    PubMed  CAS  Google Scholar 

  18. Chiti A et al (1996) Assessment of mediastinal involvement in lung cancer with technetium-99m-sestamibi SPECT. J Nucl Med 37(6):938–942

    PubMed  CAS  Google Scholar 

  19. Spanu A et al (2003) The usefulness of 99mTc-tetrofosmin SPECT in the detection of intrathoracic malignant lesions. Int J Oncol 22(3):639–649

    PubMed  Google Scholar 

  20. Cermik TF et al (2003) Thallium-201 SPECT in advanced non-small cell lung cancer: in relation with chemotherapeutic response, survival, distant metastasis and p53 status. Ann Nucl Med 17(5):369–374

    Article  PubMed  CAS  Google Scholar 

  21. Sobic-Saranovic D et al (2008) Assessment of non-small cell lung cancer viability and necrosis with three radiopharmaceuticals. Hell J Nucl Med 11(1):16–20

    PubMed  Google Scholar 

  22. Yuksel M et al (2001) Monitoring the chemotherapeutic response in primary lung cancer using 99mTc-MIBI SPET. Eur J Nucl Med 28(7):799–806

    Article  PubMed  CAS  Google Scholar 

  23. Maublant JC et al (1993) In vitro uptake of technetium-99m-teboroxime in carcinoma cell lines and normal cells: comparison with technetium-99m-sestamibi and thallium-201. J Nucl Med 34(11):1949–1952

    PubMed  CAS  Google Scholar 

  24. Kostakoglu L et al (1998) Association of tumor washout rates and accumulation of technetium-99m-MIBI with expression of P-glycoprotein in lung cancer. J Nucl Med 39(2):228–234

    PubMed  CAS  Google Scholar 

  25. Zhou J et al (2001) Expression of multidrug resistance protein and messenger RNA correlate with (99m)Tc-MIBI imaging in patients with lung cancer. J Nucl Med 42(10):1476–1483

    PubMed  CAS  Google Scholar 

  26. Yuksel M et al (2002) 99mTc-MIBI SPET in non-small cell lung cancer in relationship with Pgp and prognosis. Eur J Nucl Med Mol Imaging 29(7):876–881

    Article  PubMed  CAS  Google Scholar 

  27. Hassan IM et al (1989) Uptake and kinetics of Tc-99m hexakis 2-methoxy isobutyl isonitrile in benign and malignant lesions in the lungs. Clin Nucl Med 14(5):333–340

    Article  PubMed  CAS  Google Scholar 

  28. Mohan HK, Miles KA (2009) Cost-effectiveness of 99mTc-sestamibi in predicting response to chemotherapy in patients with lung cancer: systematic review and meta-analysis. J Nucl Med 50(3):376–381

    Article  PubMed  CAS  Google Scholar 

  29. Abdel-Dayem HM et al (1994) Tracer imaging in lung cancer. Eur J Nucl Med 21(1):57–81

    Article  PubMed  CAS  Google Scholar 

  30. Pauwels EK et al (1998) The mechanism of accumulation of tumour-localising radiopharmaceuticals. Eur J Nucl Med 25(3):277–305

    Article  PubMed  CAS  Google Scholar 

  31. Schillaci O et al (2004) Is SPECT/CT with a hybrid camera useful to improve scintigraphic imaging interpretation? Nucl Med Commun 25(7):705–710

    Article  PubMed  Google Scholar 

  32. Malpas JS et al (1995) Myeloma during a decade: clinical experience in a single centre. Ann Oncol 6(1):11–18

    PubMed  CAS  Google Scholar 

  33. Baur-Melnyk A et al (2005) Role of MRI for the diagnosis and prognosis of multiple myeloma. Eur J Radiol 55(1):56–63

    Article  PubMed  Google Scholar 

  34. Attal M et al (1996) A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma Intergroupe Francais du Myelome. N Engl J Med 335(2):91–97

    Article  PubMed  CAS  Google Scholar 

  35. Durie BG, Salmon SE (1975) A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer 36(3):842–854

    Article  PubMed  CAS  Google Scholar 

  36. Durie BG et al (2002) Whole-body (18)F-FDG PET identifies high-risk myeloma. J Nucl Med 43(11):1457–1463

    PubMed  Google Scholar 

  37. Otsuka N et al (1993) Bone and 67 Ga scintigraphy in the evaluation of rib lesions in patients with multiple myeloma. Radiat Med 11(3):75–80

    PubMed  CAS  Google Scholar 

  38. Lindstrom E, Lindstrom FD (1980) Skeletal scintigraphy with technetium diphosphonate in multiple myeloma–a comparison with skeletal x-ray. Acta Med Scand 208(4):289–291

    PubMed  CAS  Google Scholar 

  39. Ak I et al (2003) Tc-99m methoxyisobutylisonitrile bone marrow imaging for predicting the levels of myeloma cells in bone marrow in multiple myeloma: correlation with CD38/CD138 expressing myeloma cells. Ann Hematol 82(2):88–92

    Article  PubMed  CAS  Google Scholar 

  40. Alexandrakis MG et al (2002) Correlation between the uptake of Tc-99m-sestaMIBI and prognostic factors in patients with multiple myeloma. Clin Lab Haematol 24(3):155–159

    Article  PubMed  CAS  Google Scholar 

  41. Catalano L et al (1999) Detection of focal myeloma lesions by technetium-99m-sestaMIBI scintigraphy. Haematologica 84(2):119–124

    PubMed  CAS  Google Scholar 

  42. Durie BG (1986) Staging and kinetics of multiple myeloma. Semin Oncol 13(3):300–309

    PubMed  CAS  Google Scholar 

  43. Pace L et al (1998) Different patterns of technetium-99m sestamibi uptake in multiple myeloma. Eur J Nucl Med 25(7):714–720

    Article  PubMed  CAS  Google Scholar 

  44. Fonti R et al (2001) Bone marrow uptake of 99mTc-MIBI in patients with multiple myeloma. Eur J Nucl Med 28(2):214–220

    Article  PubMed  CAS  Google Scholar 

  45. Tirovola EB et al (1996) The use of 99mTc-MIBI scanning in multiple myeloma. Br J Cancer 74(11):1815–1820

    Article  PubMed  CAS  Google Scholar 

  46. Adams BK, Fataar A, Nizami MA (1996) Technetium-99m-sestamibi uptake in myeloma. J Nucl Med 37(6):1001–1002

    PubMed  CAS  Google Scholar 

  47. el Shirbiny AM et al (1997) Technetium-99m-MIBI versus fluorine-18-FDG in diffuse multiple myeloma. J Nucl Med 38(8):1208–1210

    PubMed  Google Scholar 

  48. Mele A et al (2007) Technetium-99m sestamibi scintigraphy is sensitive and specific for the staging and the follow-up of patients with multiple myeloma: a multicentre study on 397 scans. Br J Haematol 136(5):729–735

    Article  PubMed  CAS  Google Scholar 

  49. Bacovsky J et al (2005) Scintigraphy using (99m)Tc-MIBI (sestamibi), a sensitive parameter of activity of multiple myeloma. Neoplasma 52(4):302–306

    PubMed  CAS  Google Scholar 

  50. Koutsikos J et al (2006) Scintigraphy with technetium-99m methoxyisobutylisonitrile in multiple myeloma patients: correlation with the International Staging System. Hell J Nucl Med 9(3):177–180

    PubMed  Google Scholar 

  51. Koutsikos J et al (2005) Combined use of 99mTc-sestamibi and 99mTc-V-DMSA in the assessment of chemotherapy effectiveness in patients with multiple myeloma. J Nucl Med 46(6):978–982

    PubMed  CAS  Google Scholar 

  52. Fonti R et al (2004) Functional imaging of multidrug resistant phenotype by 99mTc-MIBI scan in patients with multiple myeloma. Cancer Biother Radiopharm 19(2):165–170

    Article  PubMed  CAS  Google Scholar 

  53. Nicolato A et al (1995) Prognostic factors in low-grade supratentorial astrocytomas: a uni-multivariate statistical analysis in 76 surgically treated adult patients. Surg Neurol 44(3):208–221, discussion 221–223

    Article  PubMed  CAS  Google Scholar 

  54. Nakamura M et al (2000) Analysis of prognostic and survival factors related to treatment of low-grade astrocytomas in adults. Oncology 58(2):108–116

    Article  PubMed  CAS  Google Scholar 

  55. Del Sole A et al (2004) Position of nuclear medicine techniques in the diagnostic work-up of brain tumors. Q J Nucl Med Mol Imaging 48(2):76–81

    PubMed  Google Scholar 

  56. Baillet G et al (1994) Evaluation of single-photon emission tomography imaging of supratentorial brain gliomas with technetium-99m sestamibi. Eur J Nucl Med 21(10):1061–1066

    Article  PubMed  CAS  Google Scholar 

  57. Bagni B et al (1995) SPET imaging of intracranial tumours with 99Tcm-sestamibi. Nucl Med Commun 16(4):258–264

    Article  PubMed  CAS  Google Scholar 

  58. Nishiyama Y et al (2001) Comparison of 99Tcm-MIBI with 201Tl chloride SPET in patients with malignant brain tumours. Nucl Med Commun 22(6):631–639

    Article  PubMed  CAS  Google Scholar 

  59. Minutoli F et al (2003) 99mTc-MIBI SPECT in distinguishing neoplastic from nonneoplastic intracerebral hematoma. J Nucl Med 44(10):1566–1573

    PubMed  Google Scholar 

  60. Yokogami K et al (1998) Application of SPET using technetium-99m sestamibi in brain tumours and comparison with expression of the MDR-1 gene: Is it possible to predict the response to chemotherapy in patients with gliomas by means of 99mTc-sestamibi SPET? Eur J Nucl Med 25(4):401–409

    Article  PubMed  CAS  Google Scholar 

  61. Beauchesne P, Soler C (2002) Correlation of 99mTc-MIBI brain spect (functional index ratios) and survival after treatment failure in malignant glioma patients. Anticancer Res 22(5):3081–3085

    PubMed  CAS  Google Scholar 

  62. Leitha T, Glaser C, Lang S (1998) Is early sestamibi imaging in head and neck cancer affected by MDR status, p53 expression, or cell proliferation? Nucl Med Biol 25(6):539–541

    Article  PubMed  CAS  Google Scholar 

  63. Kallen K et al (2000) Quantitative 201Tl SPET imaging in the follow-up of treatment for brain tumour: A sensitive tool for the early identification of response to chemotherapy? Nucl Med Commun 21(3):259–267

    Article  PubMed  CAS  Google Scholar 

  64. Roesdi MF et al (1998) Thallium-201 SPECT as response parameter for PCV chemotherapy in recurrent glioma. J Neurooncol 40(3):251–255

    Article  PubMed  CAS  Google Scholar 

  65. Brock CS et al (2000) Early evaluation of tumour metabolic response using [18F]fluorodeoxyglucose and positron emission tomography: a pilot study following the phase II chemotherapy schedule for temozolomide in recurrent high-grade gliomas. Br J Cancer 82(3):608–615

    Article  PubMed  CAS  Google Scholar 

  66. Prigent-Le Jeune F et al (2004) Technetium-99m sestamibi brain SPECT in the follow-up of glioma for evaluation of response to chemotherapy: first results. Eur J Nucl Med Mol Imaging 31(5):714–719

    Article  PubMed  CAS  Google Scholar 

  67. Le Jeune FP et al (2006) Sestamibi technetium-99m brain single-photon emission computed tomography to identify recurrent glioma in adults: 201 studies. J Neurooncol 77(2):177–183

    Article  PubMed  Google Scholar 

  68. O’Tuama LA et al (1993) Thallium-201 versus technetium-99m-MIBI SPECT in evaluation of childhood brain tumors: a within-subject comparison. J Nucl Med 34(7):1045–1051

    PubMed  Google Scholar 

  69. Delmon-Moingeon LI et al (1990) Uptake of the cation hexakis(2-methoxyisobutylisonitrile)-technetium-99m by human carcinoma cell lines in vitro. Cancer Res 50(7):2198–2202

    PubMed  CAS  Google Scholar 

  70. Louis DN et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    Article  PubMed  Google Scholar 

  71. Barai S et al (2003) Evaluation of single photon emission computerised tomography (SPECT) using Tc99m-tetrofosmin as a diagnostic modality for recurrent posterior fossa tumours. J Postgrad Med 49(4):316–320, discussion 320–321

    PubMed  CAS  Google Scholar 

  72. Henze M et al (2006) Comparison of diagnostic accuracy of (18)F-FDG PET, (123)I-IMT- and (99m)Tc-MIBI SPECT: evaluation of tumour progression in irradiated low grade astrocytomas. Nuklearmedizin 45(1):49–56

    PubMed  CAS  Google Scholar 

  73. Kim S et al (2005) 11 C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 32(1):52–59

    Article  PubMed  CAS  Google Scholar 

  74. Chen W et al (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46(6):945–952

    PubMed  CAS  Google Scholar 

  75. Turner DA et al (1972) The use of 67 Ga scanning in the staging of Hodgkin’s disease. Radiology 104(1):97–101

    PubMed  CAS  Google Scholar 

  76. Iosilevsky G et al (1985) Uptake of gallium-67 citrate and [2-3 H]deoxyglucose in the tumor model, following chemotherapy and radiotherapy. J Nucl Med 26(3):278–282

    PubMed  CAS  Google Scholar 

  77. Kostakoglu L et al (1992) Validation of gallium-67-citrate single-photon emission computed tomography in biopsy-confirmed residual Hodgkin’s disease in the mediastinum. J Nucl Med 33(3):345–350

    PubMed  CAS  Google Scholar 

  78. Schuster DM, Alazraki N (2002) Gallium and other agents in diseases of the lung. Semin Nucl Med 32(3):193–211

    Article  PubMed  Google Scholar 

  79. Even-Sapir E, Israel O (2003) Gallium-67 scintigraphy: a cornerstone in functional imaging of lymphoma. Eur J Nucl Med Mol Imaging 30(Suppl 1):S65–S81

    Article  PubMed  CAS  Google Scholar 

  80. Ziegels P et al (1995) Comparison of technetium-99m methoxyisobutylisonitrile and gallium-67 citrate scanning in the assessment of lymphomas. Eur J Nucl Med 22(2):126–131

    Article  PubMed  CAS  Google Scholar 

  81. Maurea S et al (1998) Tc-99m sestamibi imaging in the diagnostic assessment of patients with lymphomas: comparison with clinical and radiological evaluation. Clin Nucl Med 23(5):283–290

    Article  PubMed  CAS  Google Scholar 

  82. Naddaf SY et al (1998) Comparison between 201Tl-chloride and 99Tc(m)-sestamibi SPET brain imaging for differentiating intracranial lymphoma from non-malignant lesions in AIDS patients. Nucl Med Commun 19(1):47–53

    Article  PubMed  CAS  Google Scholar 

  83. Kapucu LO et al (1997) Evaluation of therapy response in children with untreated malignant lymphomas using technetium-99m-sestamibi. J Nucl Med 38(2):243–247

    PubMed  CAS  Google Scholar 

  84. Shih WJ et al (1998) Functional retention of Tc-99m MIBI in mediastinal lymphomas as a predictor of chemotherapeutic response demonstrated by consecutive thoracic SPECT imaging. Clin Nucl Med 23(8):505–508

    Article  PubMed  CAS  Google Scholar 

  85. Kao CH et al (2001) Evaluation of chemotherapy response using technetium-99M-sestamibi scintigraphy in untreated adult malignant lymphomas and comparison with other prognosis factors: a preliminary report. Int J Cancer 95(4):228–231

    Article  PubMed  CAS  Google Scholar 

  86. Kao CH et al (2001) Technetium-99m-sestamethoxyisobutylisonitrile scan as a predictor of chemotherapy response in malignant lymphomas compared with P-glycoprotein expression, multidrug resistance-related protein expression and other prognosis factors. Br J Haematol 113(2):369–374

    Article  PubMed  CAS  Google Scholar 

  87. Matsui R et al (1995) Tc-99m sestamibi uptake by malignant lymphoma and slow washout. Clin Nucl Med 20(4):352–356

    Article  PubMed  CAS  Google Scholar 

  88. Tsuchiya H et al (1997) Limb salvage using distraction osteogenesis. A classification of the technique. J Bone Joint Surg Br 79(3):403–411

    Article  PubMed  CAS  Google Scholar 

  89. Jaffe N, Patel SR, Benjamin RS (1995) Chemotherapy in osteosarcoma. Basis for application and antagonism to implementation; early controversies surrounding its implementation. Hematol Oncol Clin North Am 9(4):825–840

    PubMed  CAS  Google Scholar 

  90. Tsuchiya H et al (1999) Marginal excision for osteosarcoma with caffeine assisted chemotherapy. Clin Orthop Relat Res 358:27–35

    Article  PubMed  Google Scholar 

  91. Taki J et al (1997) Evaluating benign and malignant bone and soft-tissue lesions with technetium-99m-MIBI scintigraphy. J Nucl Med 38(4):501–506

    PubMed  CAS  Google Scholar 

  92. Moustafa H et al (2003) 99mTc-MIBI in the assessment of response to chemotherapy and detection of recurrences in bone and soft tissue tumours of the extremities. Q J Nucl Med 47(1):51–57

    PubMed  CAS  Google Scholar 

  93. Soderlund V et al (1997) Use of 99mTc-MIBI scintigraphy in the evaluation of the response of osteosarcoma to chemotherapy. Eur J Nucl Med 24(5):511–515

    Article  PubMed  CAS  Google Scholar 

  94. Taki J et al (2008) Prediction of final tumor response to preoperative chemotherapy by Tc-99m MIBI imaging at the middle of chemotherapy in malignant bone and soft tissue tumors: comparison with Tl-201 imaging. J Orthop Res 26(3):411–418

    Article  PubMed  Google Scholar 

  95. Burak Z et al (2003) 99mTc-MIBI imaging as a predictor of therapy response in osteosarcoma compared with multidrug resistance-associated protein and P-glycoprotein expression. J Nucl Med 44(9):1394–1401

    PubMed  CAS  Google Scholar 

  96. Burak Z et al (2001) The role of 99mTc-MIBI scintigraphy in the assessment of MDR1 overexpression in patients with musculoskeletal sarcomas: comparison with therapy response. Eur J Nucl Med 28(9):1341–1350

    Article  PubMed  CAS  Google Scholar 

  97. Gorlick R et al (2001) Lack of correlation of functional scintigraphy with (99m)technetium-methoxyisobutylisonitrile with histological necrosis following induction chemotherapy or measures of P-glycoprotein expression in high-grade osteosarcoma. Clin Cancer Res 7(10):3065–3070

    PubMed  CAS  Google Scholar 

  98. Bond JH (2003) Update on colorectal polyps: management and follow-up surveillance. Endoscopy 35(8):S35–S40

    Article  PubMed  CAS  Google Scholar 

  99. Pickhardt PJ et al (2003) Computed tomographic virtual colonoscopy to screen for colorectal neoplasia in asymptomatic adults. N Engl J Med 349(23):2191–2200

    Article  PubMed  CAS  Google Scholar 

  100. Ajaj W et al (2005) MR colonography in patients with incomplete conventional colonoscopy. Radiology 234(2):452–459

    Article  PubMed  Google Scholar 

  101. Jadvar H, Fischman AJ (2001) Evaluation of pancreatic carcinoma with FDG PET. Abdom Imaging 26(3):254–259

    Article  PubMed  CAS  Google Scholar 

  102. Stahl A et al (2004) PET/CT molecular imaging in abdominal oncology. Abdom Imaging 29(3):388–397

    Article  PubMed  CAS  Google Scholar 

  103. Krolicki L et al (2002) Technetium-99m MIBI imaging in diagnosis of pelvic and abdominal masses in patients with suspected gynaecological malignancy. Nucl Med Rev Cent East Eur 5(2):131–137

    PubMed  Google Scholar 

  104. Ferlitsch A et al (2007) Prescintigraphic morphine application for abdominal adenocarcinoma imaging, with technetium-99m methoxy isobutyl isonitrile. Hell J Nucl Med 10(1):14–18

    PubMed  Google Scholar 

  105. Kawata K et al (2004) Usefulness of 99mTc-sestamibi scintigraphy in suggesting the therapeutic effect of chemotherapy against gastric cancer. Clin Cancer Res 10(11):3788–3793

    Article  PubMed  CAS  Google Scholar 

  106. Chang CS et al (2003) Effect of P-glycoprotein and multidrug resistance associated protein gene expression on Tc-99m MIBI imaging in hepatocellular carcinoma. Nucl Med Biol 30(2):111–117

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Sabet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sabet, A. (2012). Tc-99m Sestamibi in Miscellaneous Tumors. In: Bucerius, J., Ahmadzadehfar, H., Biersack, HJ. (eds) 99mTc-Sestamibi. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04233-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04233-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04232-4

  • Online ISBN: 978-3-642-04233-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics