Skip to main content

Tc-99m-MIBI for Thyroid Imaging

  • Chapter
  • First Online:
99mTc-Sestamibi

Abstract

The thyroid is an endocrine gland mostly located in the neck anterior to the trachea and just below the larynx consisting of two lateral lobes which are connected by an isthmus. The thyroid gland is closely attached to the cartilage of the larynx and to the proximal trachea and moves on swallowing. The embryologic origin of the thyroid gland is the base of the tongue from which it descends to the middle of the neck. Sometimes, remnants of thyroid tissue can be found at the base of the tongue as a lingual thyroid or along the line of descent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hampel R, Bennöhr G, Gordalla A, Below H (2009) Jodidurie bei Erwachsenen in Deutschland 2005 im WHO-Zielbereich. Med Klin 104:425–428

    Article  CAS  Google Scholar 

  2. Park HM (2006) The thyroid gland. In: Henkin RE, Bova D, Dillehay GL, Halama JR, Karesh SM, Wagner RH, Zimmer AM (eds) Nuclear medicine, 2nd edn. Mosby, Philadelphia, pp 790–819

    Google Scholar 

  3. Reiners C, Wegscheider K, Schicha H, Theissen P, Vaupel R, Wrbitzky R, Schumm-Draeger PM (2004) Prevalence of thyroid disorders in the working population of Germany: ultrasonography screening in 96,278 unselected employees. Thyroid 14:926–932

    Article  PubMed  Google Scholar 

  4. Schicha H, Hellmich M, Lehmacher W, Eschner W, Schmidt M, Kobe C, Schober O, Dietlein M (2009) Should all patients with thyroid nodules ≥1 cm undergo fine-needle aspiration biopsy? Nuklearmedizin 48:79–83

    PubMed  Google Scholar 

  5. Dillehay GL (2006) Non-FDG tumor imaging. In: Henkin RE, Bova D, Dillehay GL, Halama JR, Karesh SM, Wagner RH, Zimmer AM (eds) Nuclear medicine, 2nd edn. Mosby, Philadelphia, pp 1443–1479

    Google Scholar 

  6. Szybiński Z, Huszno B, Gołkowski F, Atneisha A (1993) Technetium-99 m-methoxyisobutylisonitrile in early diagnosis of thyroid cancer. Endokrynol Pol 44:427–433

    PubMed  Google Scholar 

  7. Földes I, Lévay A, Stotz G (1993) Comparative scanning of thyroid nodules with technetium-99 m pertechnetate and technetium-99 m methoxyisobutylisonitrile. Eur J Nucl Med 20:330–333

    Article  PubMed  Google Scholar 

  8. Hurtado-López LM, Martínez-Duncker C (2007) Negative MIBI thyroid scans exclude differentiated and medullary thyroid cancer in 100% of patients with hypofunctioning thyroid nodules. Eur J Nucl Med Mol Imaging 34:1701–1703

    Article  PubMed  Google Scholar 

  9. Pacini F, Schlumberger M, Dralle H, Elisei R, Smit JW, Wiersinga W, European Thyroid Cancer Taskforce (2006) European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol 154:787–803

    Article  PubMed  CAS  Google Scholar 

  10. Pacini F, Castagna MG, Brilli L, Pentheroudakis G (2009) ESMO Guidelines Working Group Differentiated thyroid cancer: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol 20 (Suppl 4): 143–146 http://www.ncbi.nlm.nih.gov/pubmed

    Article  PubMed  CAS  Google Scholar 

  11. Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, Mazzaferri EL, McIver B, Sherman SI, Tuttle RM (2006) The American Thyroid Association Guidelines Taskforce Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 16:109–142

    Article  PubMed  Google Scholar 

  12. Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, Mazzaferri EL, McIver B, Pacini F, Schlumberger M, Sherman SI, Steward DL, Tuttle RM (2009) American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19: 1167–1214 http://www.ncbi.nlm.nih.gov/pubmed/19860577

    Article  PubMed  Google Scholar 

  13. Rosen JE, Stone MD (2006) Contemporary diagnostic approach to the thyroid nodule. J Surg Oncol 94:649–661

    Article  PubMed  Google Scholar 

  14. Shirodkar M, Jabbour SA (2008) Endocrine incidentalomas. Int J Clin Pract 62:1423–1431

    Article  PubMed  CAS  Google Scholar 

  15. Yeung MJ, Serpell JW (2008) Management of the solitary thyroid nodule. Oncologist 13:105–112

    Article  PubMed  Google Scholar 

  16. Oertel YC, Miyahara-Felipe L, Mendoza MG, Yu K (2007) Value of repeated fine needle aspirations of the thyroid: an analysis of over ten thousand FNAs. Thyroid 17:1061–1066

    Article  PubMed  Google Scholar 

  17. Orija IB, Piñeyro M, Biscotti C, Reddy SS, Hamrahian AH (2007) Value of repeating a nondiagnostic thyroid fine-needle aspiration biopsy. Endocr Pract 13:735–742

    PubMed  Google Scholar 

  18. Izquierdo R, Shankar R, Kort K, Khurana K (2009) Ultrasound-guided fine-needle aspiration in the management of thyroid nodules in children and adolescents. Thyroid 19:703–705

    Article  PubMed  Google Scholar 

  19. Theoharis CGA, Schofield KM, Hammers L, Udelsman R, Chhieng DC (2009) The Bethesda thyroid fine-needle aspiration classification system: year 1 at an academic institution. Thyroid 19:1215–1223

    Article  PubMed  Google Scholar 

  20. Chiu ML, Kronauge JF, Worms DP (1990) Effect of mitochondrial and plasma membrane potentials on accumulation of hexakis (2-methoxyisobutylisonitrile) technetium(I) in cultured mouse fibroblast. J Nucl Med 31:1646–1653

    PubMed  CAS  Google Scholar 

  21. Sundram FX, Mack P (1995) Evaluation of thyroid nodules for malignancy using 99mTc-sestamibi. Nucl Med Commun 16:687–693

    Article  PubMed  CAS  Google Scholar 

  22. Kresnik E, Gallowitsch HJ, Mikosch P, Gomez I, Lind P (1997) Technetium-99 m-MIBI scintigraphy of thyroid nodules in an endemic goiter area. J Nucl Med 38:62–65

    PubMed  CAS  Google Scholar 

  23. Alonso O, Mut F, Lago G, Aznarez A, Nunez M, Canepa J et al (1998) Tc-99 m-MIBI scanning of the thyroid gland in patients with markedly decreased pertechnetate uptake. Nucl Med Commun 19:257–261

    Article  PubMed  CAS  Google Scholar 

  24. Mezosi E, Bajnok L, Gyory F, Varga J, Sztojka I, Szabo J, Galuska L, Leovey A, Kakuk G, Nagy E (1999) The role of technetium-99 m methoxyisobutylisonitrile scintigraphy in the differential diagnosis of cold thyroid nodules. Eur J Nucl Med 26:798–803

    Article  PubMed  CAS  Google Scholar 

  25. Erdil TY, Ozker K, Kabasakal L, Kanmaz B, Sönmezoglu K, Atasoy KC, Turoglu HT, Uslu I, Isitman AT, Onsel C (2000) Correlation of technetium-99 m MIBI and thallium-201 retention in solitary cold thyroid nodules with postoperative histopathology. Eur J Nucl Med 27:713–720

    Article  PubMed  CAS  Google Scholar 

  26. Sathekge MM, Mageza RB, Muthuphei MN, Modiba MC, Clauss RC (2001) Evaluation of thyroid nodules with technetium-99 m MIBI and technetium-99 m pertechnetate. Head Neck 23:305–310

    Article  PubMed  CAS  Google Scholar 

  27. Demirel K, Kapucu O, Yücel C, Ozdemir H, Ayvaz G, Taneri F (2003) A comparison of radionuclide thyroid angiography, (99 m)Tc-MIBI scintigraphy and power Doppler ultrasonography in the differential diagnosis of solitary cold thyroid nodules. Eur J Nucl Med Mol Imaging 30:642–650

    Article  PubMed  CAS  Google Scholar 

  28. Hurtado-López LM, Arellano-Montaño S, Torres-Acosta EM, Zaldivar-Ramirez FR, Duarte-Torres RM, Alonso-De-Ruiz P, Martínez-Duncker I, Martínez-Duncker C (2004) Combined use of fine-needle aspiration biopsy, MIBI scans and frozen section biopsy offers the best diagnostic accuracy in the assessment of the hypofunctioning solitary thyroid nodule. Eur J Nucl Med Mol Imaging 31:1273–1279

    Article  PubMed  Google Scholar 

  29. Theissen P, Schmidt M, Ivanova T, Dietlein M, Schicha H (2009) MIBI scintigraphy in hypofunctioning thyroid nodules – Can it predict the dignity of the lesion? Nuklearmedizin 48:144–152

    PubMed  CAS  Google Scholar 

  30. Sharma R, Mondal A, Shankar LR, Sahoo M, Bhatnagar P, Sawroop K, Chopra MK, Kashyap R (2004) Differentiation of malignant and benign solitary thyroid nodules using 30- and 120-minute Tc-99 m MIBI scans. Clin Nucl Med 29:534–537

    Article  PubMed  Google Scholar 

  31. Schmidt M, Thoma N, Dietlein M, Moka D, Eschner W, Faust M, Schröder W, von Hülst-Schlabrendorff M, Ehses W, Schicha H (2008) 99mTc-MIBI SPECT in primary hyperparathyroidism – Influence of concomitant vitamin D deficiency for visualization of parathyroid adenomas. Nuklearmedizin 47:1–7

    PubMed  CAS  Google Scholar 

  32. Alam MDS, Kasagi K, Misaki T, Miyamoto S, Iwata M, Iida Y, Konishi J (1998) Diagnostic value of technetium-99 m methoxyisobutyl I sonitrile (99mTc-MIBI) scintigraphy in detecting thyroid cancer metastases: a critical evaluation. Thyroid 8:1091–1100

    Article  PubMed  CAS  Google Scholar 

  33. Berker D, Aydin Y, Ustun I, Gul K, Tutuncu Y, Işik S, Delibasi T, Guler S (2008) The value of fine-needle aspiration biopsy in subcentimeter thyroid nodules. Thyroid 18:603–608

    Article  PubMed  Google Scholar 

  34. Raber W, Kmen E, Kaserer K, Waldhäusl W, Vierhapper H (1997) Der kalte knoten der Schilddrüse: 20jährige Erfahrungen mit 2071 Patienten und diagnostische Grenzen der Feinnadelbiopsie. Wien Klein Wochenschr 109/4:116–122

    Google Scholar 

  35. Tee YY, Lowe AJ, Brand CA, Judson RT (2007) Fine-needle aspiration may miss a third of all malignancy in palpable thyroid nodules: a comprehensive literature review. Ann Surg 246:714–720

    Article  PubMed  Google Scholar 

  36. O’Driscoll CM, Baker F, Casey MJ et al (1991) Localization of recurrent medullary thyroid carcinoma with technetium-99 m-methoxyisobutylnitrile scintigraphy: a case report. J Nucl Med 32:2281–2283

    PubMed  Google Scholar 

  37. Balon HR, Fink-Bennett D, Stoffer SS (1992) Technetium-99 m-sestamibi uptake by recurrent Hurthle cell carcinoma of the thyroid. J Nucl Med 33:1393–1395

    PubMed  CAS  Google Scholar 

  38. Scott AM, Kostakoglu L, O’Brien JP et al (1992) Comparison of technetium-99 m-MIBI and thallium-201-chloride uptake in primary thyroid lymphoma. J Nucl Med 33:1396–1398

    PubMed  CAS  Google Scholar 

  39. Schmidt M, Schicha H (2010) MIBI-SPECT in hypofunctioning thyroid nodules for detection of thyroid carcinoma [MIBI-SPECT bei kalten Knoten zur Schilddrüsenkarzinomdetektion]. Nuklearmediziner 33:214–221

    Article  Google Scholar 

  40. De Geus-Oei LF, Pieters GF, Bonenkamp JJ, Mudde AH, Bleeker-Rovers CP, Corstens FH, Oyen WJ (2006) 18F-FDG PET reduces unnecessary hemithyroidectomies for thyroid nodules with inconclusive cytologic results. J Nucl Med 47:770–775

    PubMed  Google Scholar 

  41. Sebastianes FM, Cerci JJ, Zanoni PH, Soares J Jr, Chibana LK, Tomimori EK, de Camargo RY, Izaki M, Giorgi MC, Eluf-Neto J, Meneghetti JC, Pereira MA (2007) Role of 18 F-fluorodeoxyglucose positron emission tomography in preoperative assessment of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab 92:4485–4488

    Article  PubMed  CAS  Google Scholar 

  42. Hales NW, Krempl GA, Medina JE (2008) Is there a role for fluorodeoxyglucose positron emission tomography/computed tomography in cytologically indeterminate thyroid nodules? Am J Otolaryngol 29:113–118

    Article  PubMed  Google Scholar 

  43. Katz SC, Shaha A (2008) PET-associated incidental neoplasms of the thyroid. J Am Coll Surg 207:259–264

    Article  PubMed  Google Scholar 

  44. Shie P, Cardarelli R, Sprawls K, Fulda KG, Taur A (2009) Systematic review: prevalence of malignant incidental thyroid nodules identified on fluorine-18 fluorodeoxyglucose positron emission tomography. Nucl Med Commun 30:742–748

    Article  PubMed  Google Scholar 

  45. Börner AR, Voth E, Theissen P, Wienhard K, Wagner R, Schicha H (2000) Glucose metabolism of the thyroid in autonomous goiter measured by F-18-FDG-PET. Exp Clin Endocrinol Diabetes 108:191–196

    Article  Google Scholar 

  46. Gianoukakis AG, Karam M, Cheema A, Cooper JA (2003) Autonomous thyroid nodules visualized by positron emission tomography with 18 F-fluorodeoxyglucose: a case report and review of the literature. Thyroid 13:395–399

    Article  PubMed  CAS  Google Scholar 

  47. Saggiorato E, Angusti T, Rosas R, Martinese M, Finessi M, Arecco F, Trevisiol E, Bergero N, Puligheddu B, Volante M, Podio V, Papotti M, Orlandi F (2009) 99mTc-MIBI imaging in the presurgical characterization of thyroid follicular neoplasms: relationship to multidrug resistance protein expression. J Nucl Med 50:1785–1793

    Article  PubMed  Google Scholar 

  48. Piga M, Serra A, Boi F, Tanda ML, Martino E, Mariotti S (2008) Amiodarone-induced thyrotoxicosis. A review. Minerva Endocrinol 33:213–228

    PubMed  CAS  Google Scholar 

  49. Piga M, Cocco MC, Serra A, Boi F, Loy M, Mariotti S (2008) The usefulness of 99mTc-sestaMIBI thyroid scan in the differential diagnosis and management of amiodarone-induced thyrotoxicosis. Eur J Endocrinol 159:423–429

    Article  PubMed  CAS  Google Scholar 

  50. Verburg FA, Stokkel MP, Düren C, Verkooijen RB, Mäder U, van Isselt JW, Marlowe RJ, Smit JW, Reiners C, Luster M (2010) No survival difference after successful (131)I ablation between patients with initially low-risk and high-risk differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 37:276–283

    Article  PubMed  Google Scholar 

  51. Briele B, Hotze A, Kropp J, Bockisch A, Overbeck B, Grünwald F, Kaiser W, Biersack HJ (1991) Vergleich von 201Tl und 99mTc-MIBI in der Nachsorge des differenzierten Schilddrüsenkarzinoms [A comparison of 201Tl and 99mTc-MIBI in the follow-up of differentiated thyroid carcinomas]. Nuklearmedizin 30:115–124

    PubMed  CAS  Google Scholar 

  52. Dietlein M, Scheidhauer K, Voth E, Theissen P, Schicha H (1998) Follow-up of differentiated thyroid cancer: What is the value of FDG and sestamibi in the diagnostic algorithm? Nuklearmedizin 37:12–17

    PubMed  CAS  Google Scholar 

  53. Dadparvar S, Chevres A, Tulchinsky M, Krishna-Badrinath L, Khan AS, Slizofski WJ (1995) Clinical utility of technetium-99 m methoxisobutylisonitrile imaging in differentiated thyroid carcinoma: comparison with thallium-201 and iodine-131 Na scintigraphy, and serum thyroglobulin quantitation. Eur J Nucl Med 22:1330–1338

    Article  PubMed  CAS  Google Scholar 

  54. Nĕmec J, Nývltová O, Blazek T, Vlcek P, Racek P, Novák Z, Preiningerová M, Hubácková M, Krízo M, Zimák J, Bílek R (1996) Positive thyroid cancer scintigraphy using technetium-99 m methoxyisobutylisonitrile. Eur J Nucl Med 23:69–71

    Article  PubMed  Google Scholar 

  55. Grünwald F, Menzel C, Bender H, Palmedo H, Willkomm P, Ruhlmann J, Franckson T, Biersack HJ (1997) Comparison of 18FDG-PET with 131iodine and 99mTc-sestamibi scintigraphy in differentiated thyroid cancer. Thyroid 7:327–335

    Article  PubMed  Google Scholar 

  56. Seabold JE, Gurll N, Schurrer ME, Aktay R, Kirchner PT (1999) Comparison of 99mTc-methoxy-isobutylisonitrile and 201Tl-scintigraphy for detection of residual thyroid cancer after 131I ablative therapy. J Nucl Med 40:1434–1440

    PubMed  CAS  Google Scholar 

  57. Rubello D, Mazzarotto R, Casara D (2000) The role of technetium-99 m methoxyisobutylisonitrile scintigraphy in the planning of therapy and follow-up of patients with differentiated thyroid carcinoma after surgery. Eur J Nucl Med 27:431–440

    Article  PubMed  CAS  Google Scholar 

  58. Iwata M, Kasagi K, Misaki T, Matsumoto K, Iida Y, Ishimori T, Nakamoto Y, Higashi T, Saga T, Konishi J (2004) Comparison of whole-body 18F-FDG PET, 99mTc-MIBI SPET, and post-therapeutic 131I-Na scintigraphy in the detection of metastatic thyroid cancer. Eur J Nucl Med Mol Imaging 31:491–498

    Article  PubMed  CAS  Google Scholar 

  59. Fujie S, Okumura Y, Sato S, Akaki S, Katsui K, Himei K, Takemoto M, Kanazawa S (2005) Diagnostic capabilities of I-131, TI-201, and Tc-99 m-MIBI scintigraphy for metastatic differentiated thyroid carcinoma after total thyroidectomy. Acta Med Okayama 59:99–107

    PubMed  Google Scholar 

  60. Ronga G, Ventroni G, Montesano T, Filesi M, Ciancamerla M, Di Nicola AD, Travascio L, Vestri AR, Signore A (2007) Sensitivity of [99mTc]methoxyisobutylisonitrile scan in patients with metastatic differentiated thyroid cancer. Q J Nucl Med Mol Imaging 51:364–371

    PubMed  CAS  Google Scholar 

  61. Wu HS, Huang WS, Liu YC, Yen RF, Shen YY, Kao CH (2003) Comparison of FDG-PET and technetium-99 m MIBI SPECT to detect metastatic cervical lymph nodes in well-differentiated thyroid carcinoma with elevated serum HTG but negative I-131 whole body scan. Anticancer Res 23:4235–4238

    PubMed  Google Scholar 

  62. Zetting G, Leitha T, Niederle B, Kaserer K, Becherer A, Kletter K, Dudczak R (2001) FDG positron emission tomographic, radioiodine, and MIBI imaging in a patient with poorly differentiated insular thyroid carcinoma. Clin Nucl Med 26:599–601

    Article  Google Scholar 

  63. Küçük ON, Gültekin SS, Aras G, Ibiş E (2006) Radioiodine whole-body scans, thyroglobulin levels, 99mTc-MIBI scans and computed tomography: results in patients with lung metastases from differentiated thyroid cancer. Nucl Med Commun 27:261–266

    Article  PubMed  Google Scholar 

  64. Grünwald F, Briele B, Biersack HJ (1999) Non-131I-scintigraphy in the treatment and follow-up of thyroid cancer. Single-photon-emitters or FDG-PET? Q J Nucl Med 43:195–206

    PubMed  Google Scholar 

  65. Kloos RT, Eng C, Evans DB, Francis GL, Gagel RF, Gharib H, Moley JF, Pacini F, Ringel MD, Schlumberger M, Wells SA, The American Thyroid Association Guidelines Task Force (2009) Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 19:565–612

    Article  PubMed  Google Scholar 

  66. Schmidt M, Eschner W, Dietlein M, Theissen P, Schicha H (2005) Konventionelle nuklearmedizinische Tumordiagnostik (Tumor-SPECT): Was ist angesichts von 18F-FDG-PT noch aktuell? [Established nuclear medicine techniques for tumour diagnosis (tumour SPECT): Can they still compete with 18F-FDG-PET?]. Nuklearmedizin 44:37–48

    PubMed  CAS  Google Scholar 

  67. Ugur O, Kostakğlu L, Güler N, Caner B, Uysal U, Elahi N, Haliloğlu M, Yüksel D, Aras T, Bayhan H, Bekdik C (1996) Comparison of 99mTc(V)-DMSA, 201Tl and 99mTc-MIBI imaging in the follow-up of patients with medullary carcinoma of the thyroid. Eur J Nucl Med 23:1367–1371

    Article  PubMed  CAS  Google Scholar 

  68. Diehl M, Risse JH, Brandt-Mainz K, Dietlein M, Bohuslavizki KH, Matheja P, Lange H, Bredow J, Körber C, Grünwald F (2001) Fluorine-18 fluorodeoxyglucose positron emission tomography in medullary thyroid cancer: results of a multicentre study. Eur J Nucl Med 28:1671–1676

    Article  PubMed  CAS  Google Scholar 

  69. Adalet I, Koçak M, Ogŭz H, Alagöl F, Cantez S (1999) Determination of medullary thyroid carcinoma metastases by 201Tl, 99mTc(V)DMSA, 99mTc-MIBI and 99mTc-tetrofosmin. Nucl Med Commun 20:353–359

    Article  PubMed  CAS  Google Scholar 

  70. Learoyd DL, Roach PJ, Briggs GM, Delbridge LW, Wilmshurst EG, Robinson BG (1997) Technetium-99 m-sestamibi scanning in recurrent medullary thyroid carcinoma. J Nucl Med 38:227–230

    PubMed  CAS  Google Scholar 

  71. Lebouthillier G, Morais J, Picard M, Picard D, Chartrand R, D’Amour P (1993) Tc-99 m sestamibi and other agents in the detection of metastatic medullary carcinoma of the thyroid. Clin Nucl Med 18:657–661

    Article  PubMed  CAS  Google Scholar 

  72. Roelants V, Michel L, Lonneux M, Lacrosse M, Delgrange E, Donckier JE (2001) Usefulness of [99mTc]MIBI and [18F]fluorodeoxyglucose for imaging recurrent medullary thyroid cancer and hyperparathyroidism in MEN 2a syndrome. Acta Clin Belg 56:373–377

    PubMed  CAS  Google Scholar 

  73. Sato S, Okumura Y, Tamizu A, Maki K, Akaki S, Takeda Y, Kanazawa S, Hiraki Y (2001) Detection of hepatic metastasis from medullary thyroid cancer with Tc-99 m-MIBI scintigraphy in a patient with Sipple’s syndrome. Ann Nucl Med 15:443–446

    Article  PubMed  CAS  Google Scholar 

  74. Bertz J, Kraywinkel K (Robert Koch-Institut - Hrsg.) (2010) Verbreitung von Krebserkrankungen in Deutschland. Entwicklung der Prävalenzen zwischen 1990 und 2010. Beiträge zur Gesundheitsberichterstattung des Bundes. [Incidence and prevalence of cancer in Germany between 1990 and 2010. Federal health reports] Robert Koch-Institut, Berlin, pp 124–131

    Google Scholar 

  75. K Brandt-Mainz D Moka 2008 Schilddrüsenmalignität und Szintigraphie Nuklearmediziner 31 241 247

    Article  Google Scholar 

  76. Dietlein M, Dressler J, Grünwald F, Joseph K, Leisner B, Moser E, Reiners C, Rendl J, Schicha H, Schneider P, Schober O (2003) Deutsche Gesellschaft für Nuklearmedizin. Leitlinie zur Schilddrüsendiagnostik (Version 2) [Guideline for in vivo- and in vitro procedures for thyroid diseases (version 2)]. Nuklearmedizin 42:109–115

    PubMed  CAS  Google Scholar 

  77. Dietlein M, Kobe C, Schmidt M, Schicha H (2005) Das Inzidentalom der Schilddrüse: Über- oder Unterdiagnostik eines epidemiologischen Befundes? Nuklearmedizin 44:213–224

    PubMed  CAS  Google Scholar 

  78. Führer D, Holzapfel HP, Ruschenburg I, Paschke R (2001) Diagnostik des Schilddrüsenknotens. Deutsches Ärzteblatt 98:A2427–A2437

    Google Scholar 

  79. Hurtado-López LM, Monroy-Lozano BE, Martínez-Duncker C (2008) TSH alone is not sufficient to exclude all patients with a functioning thyroid nodule from undergoing testing to exclude thyroid cancer. Eur J Nucl Med Mol Imaging 35:1173–1178

    Article  PubMed  Google Scholar 

  80. Klain M, Maurea S, Cuocolo A, Colao A, Marzano L, Lombardi G, Salvatore M (1996) Technetium-99 m tetrofosmin imaging in thyroid diseases: comparison with Tc-99 m-pertechnetate, thallium-201 and Tc-99 m-methoxyisobutylisonitrile scans. Eur J Nucl Med 23:1568–1574

    Article  PubMed  CAS  Google Scholar 

  81. Müller S, Guth-Tougelides B, Creutzig H (1987) Imaging of malignant tumors with 99mTc-MIBI SPECT [Abstract]. J Nucl Med 28:562

    Google Scholar 

  82. Reiners C (2008) Scintigraphy or fine-needle aspiration biopsy to exclude thyroid malignancy: What should be done first in iodine deficiency? Eur J Nucl Med Mol Imaging 35:1171–1172

    Article  PubMed  CAS  Google Scholar 

  83. Reiners C, Schumm-Draeger PM, Geling M, Mastbaum C, Schönberger J, Laue-Savic A, Hackethal K, Hampel R, Heinken U, Kullak W, Linke R, Uhde W (2003) [Thyroid gland ultrasound screening (Papillon Initiative). Report of 15 incidentally detected thyroid cancers]. Internist 44:412–419

    PubMed  CAS  Google Scholar 

  84. Schmidt M (2010) Risk stratification in suspicious thyroid nodules by nuclear medicine techniques: PET or SPECT? In: Dralle H (ed) Thyroid 2009, 19th conference on the human thyroid – Heidelberg. [Nuklearmedizinische Risikostratifizierung bei suspekten Schilddrüsenknoten: PET oder SPECT? In: Schilddrüse 2009, 19. Konferenz über die menschliche Schilddrüse – Heidelberg.]. Lehmanns Media, Berlin, pp 179–189

    Google Scholar 

  85. Sharma R, Chakravarty KL, Tripathi M, Kaushik A, Bharti P, Sahoo M, Chopra MK, Rawat H, Misra A, Mondal A, Kashyap R (2007) Role of 99mTc-Tetrofosmin delayed scintigraphy and color Doppler sonography in characterization of solitary thyroid nodules. Nucl Med Commun 28:847–851

    Article  PubMed  Google Scholar 

  86. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  87. Uğur O, Kostakoğlu L, Caner B, Güler N, Gülaldi NC, Ozmen M, Uysal U, Elahi N, Erbengi G, Bejdik C (1996) Comparison of 201Tl, 99mTc-MIBI and 131I imaging in the follow-up of patients with well-differentiated thyroid carcinoma. Nucl Med Commun 17:373–377

    Article  PubMed  Google Scholar 

  88. Nakahara H, Noguchi S, Murakami N, Hoshi H, Jinnouchi S, Nagamachi S, Ohnishi T, Futami S, Flores LG 2nd, Watanabe K (1996) Technetium-99m-sestamibi scintigraphy compared with thallium-201 in evaluation of thyroid tumors. J Nucl Med. 37:901–904 http://www.ncbi.nlm.nih.gov/sites/entrez

    PubMed  CAS  Google Scholar 

  89. Sarikaya A, Huseyinova G, Irfanoglu ME, Erkmen N, Cermik TF, Berkarda S (2001) The relationship between 99mTc-sestamibi uptake and ultrastructural cell types of thyroid tumours. Nucl Med Commun 22:39–44

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt, M. (2012). Tc-99m-MIBI for Thyroid Imaging. In: Bucerius, J., Ahmadzadehfar, H., Biersack, HJ. (eds) 99mTc-Sestamibi. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04233-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04233-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04232-4

  • Online ISBN: 978-3-642-04233-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics