Skip to main content

Extensions of Fibonacci Lattice Rules

  • Conference paper
  • First Online:
Book cover Monte Carlo and Quasi-Monte Carlo Methods 2008

Abstract

We study the trigonometric degree of pairs of embedded cubature rules for the approximation of two-dimensional integrals, where the basic cubature rule is a Fibonacci lattice rule. The embedded cubature rule is constructed by simply doubling the points which results in adding a shifted version of the basic Fibonacci rule. An explicit expression is derived for the trigonometric degree of this particular extension of the Fibonacci rule based on the index of the Fibonacci number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckers, M., Cools, R.: A relation between cubature formulae of trigonometric degree and lattice rules. In: H. Brass, G. Hämmerlin (eds.) Numerical Integration IV, pp. 13–24. Birkhäuser Verlag, Basel (1993)

    Google Scholar 

  2. Cools, R., Haegemans, A.: Optimal addition of knots to cubature formulae for planar regions. Numer. Math. 49, 269–274 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cools, R., Haegemans, A.: A lower bound for the number of function evaluations in an error estimate for numerical integration. Constr. Approx. 6, 353–361 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cools, R., Nuyens, D.: A Belgian view on lattice rules. In: A. Keller, et al. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 3–21. Springer (2008)

    Google Scholar 

  5. Cools, R., Sloan, I.: Minimal cubature formulae of trigonometric degree. Math. Comp. 65(216), 1583–1600 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Davis, P., Rabinowitz, P.: Methods of Numerical Integration. Academic Press, London (1984)

    MATH  Google Scholar 

  7. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn. Addison-Wesley (1994)

    Google Scholar 

  8. Niederreiter, H., Sloan, I.: Integration of nonperiodic functions of two variables by Fibonacci lattice rules. J. Comput. Appl. Math. 51, 57–70 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Sloan, I., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press (1994)

    Google Scholar 

  10. Sloan, I., Kachoyan, P.: Lattice methods for multiple integration: theory, error analysis and examples. SIAM J. Numer. Anal. 24, 116–128 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Cools .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cools, R., Nuyens, D. (2009). Extensions of Fibonacci Lattice Rules. In: L' Ecuyer, P., Owen, A. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04107-5_15

Download citation

Publish with us

Policies and ethics