Skip to main content

Structural Idealization of Flexible Generic Wings in Computational Aeroelasticity

  • Conference paper
Summary of Flow Modulation and Fluid-Structure Interaction Findings

Abstract

In the present contribution concepts of reduced structural models for Computational Aero-Elastic simulation (CAE) on aircraft wings are presented. Here the idealization approach relies on analytical methods with the aim to shorten in comparison to a typical finite element method computational cost and time, by preserving nearly the same accuracy. Prior to more detailed investigations using higher order models, these simplified models allow an earlier access of insight regarding the aeroelastic and structural behavior of the wing at the very beginning of the design process. At first a one-dimensional idealization that extends the Timoshenko beam by taking into account additional effects due to warpings is developed. To better describe the influence of swept, a three dimensional idealization is derived. Both idealizations yield good agreements in results concerning the global static deformation and the modal behavior of the wing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reuther, J.J., Alonso, J.J., Joaquim, R.R.A., Smith, S.C.: A Coupled Aero-Structural Optimization Method for Complete Aircraft Configurations. In: AIAA 37th Aerospace Sciences Meeting (1999)

    Google Scholar 

  2. Britten, G., Braun, C., Hesse, M., Ballmann, J.: Computational Aeroelasticity with Reduced Structural Models. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 84 (2003)

    Google Scholar 

  3. Jung, W., Reimerdes, H.-G.: Concepts for Reduced Structural Models of Airplane Wings in Aeroelasticity. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 84 (2003)

    Google Scholar 

  4. Jung, W., Reimerdes, H.-G.: Ein Beitrag zur aeroelastischen Untersuchung mit idealisierten Tragfügeln. Report, DGLR-Jahrestagung, Berlin (1999)

    Google Scholar 

  5. Schneider, G., Zimmermann, H.: Static Aeroelastic Effects on High-Performance Aircraft. AGARD Report No. 725 (1986)

    Google Scholar 

  6. Guo, S., Cheng, W., Cui, D.: Aeroelastic Tailoring of Composite Wing Structure by Laminate Layup Optimization. AIAA Journal 44(12) (December 2006)

    Google Scholar 

  7. Gern, F.H., Librescu, L.: Static and Dynamic Aeroelasticity of Advanced Aircraft Wings Carrying External Stores. AIAA Journal 36(7) (July 1998)

    Google Scholar 

  8. Giles, G.L.: Equivalent Plate Modeling for Conceptual Design of Aircraft Wing Structures. AIAA Journal  95-3945, 1–17 (1995)

    Google Scholar 

  9. Kapania, R.K., Castel, F.: A Simple Element for Aeroelastic Analysis of Undamaged and Damaged Wings. AIAA Journal 28(2) (February 1990)

    Google Scholar 

  10. Shirk, M.H., Hertz, T.J., Weisshaar, T.A.: Aeroelastic Tailoring-Theory, Practice, and Promise. Journal of Aircraft 23(1), 6–17 (1985)

    Article  Google Scholar 

  11. Weisshaar, T.A.: Aeroelastic Tailoring creative Uses of Unusual Materials. AIAA Paper 87-0976-cp (1987)

    Google Scholar 

  12. Ebner, H.: Die Beanspruchung dünnwandiger Kastenträger auf Drillung bei behinderter Querschnittsverwölbung. Zeitschrift für Flugtechnik und Motorluft-Schiffahrt 24, 645–692 (1933)

    Google Scholar 

  13. Benthem, J.P.: Analysis of a symmetrical swept-back Box Beam with non-swept Centre Part. Reports and Transactions 28, 71–101 (1964)

    Google Scholar 

  14. Braun, C.: Ein modulares Verfahren für die numerische aeroelastische Analyse von Luftfahrzeugen. PhD Thesis, RWTH-Aachen University (2007)

    Google Scholar 

  15. Saad, Y.: Iterative Methods for Sparse Linear Systems. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  16. Hirsch, C.: Numerical Computation of Internal and External Flows. Butterworth Heinemann (2007)

    Google Scholar 

  17. Duan, S., Piening, M.: Investigation of the torsion-related Warping Behavior of anisotropic Boxbeam Structure. DLR Bericht, IB-131-95/33 (1995)

    Google Scholar 

  18. Jung, W.: Analyse des Strukturverhaltens gepfeilter Tragflg̈el. PhD Thesis RWTH-Aachen University, Germany (2003)

    Google Scholar 

  19. Schürmann, H.: Konstruierem mit Faser-Kunststoff-Verbunden. Springer, Heidelberg (2007)

    Google Scholar 

  20. Niu, M.C.Y.: Airframe Structural Design. Conmilit Press LTD (1996)

    Google Scholar 

  21. Dieker, S., Reimerdes, H.-G.: Elementare Festigkeitslehre im Leichtbau. Donat Verlag (2005)

    Google Scholar 

  22. Bathe, K.-J.: Finite-Elemente-Methoden. Springer, Heidelberg (1990)

    Google Scholar 

  23. Collatz, L.: Differentialgleichungen. Teubner (1990)

    Google Scholar 

  24. Altenbach, H., Altenbach, J., Naumenko, K.: Ebene Flächentragwerke. Grundlagen der Modellierung und Berechnung von Scheiben und Platte. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  25. Dugas, M.: Ein Beitrag zur Auslegung von Faserverbundtraflügeln im Vorentwurf. PhD Thesis, Stuttgart University (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tchakam, J.A.K., Reimerdes, H.G. (2010). Structural Idealization of Flexible Generic Wings in Computational Aeroelasticity. In: Schröder, W. (eds) Summary of Flow Modulation and Fluid-Structure Interaction Findings. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04088-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04088-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04087-0

  • Online ISBN: 978-3-642-04088-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics