Skip to main content

Autonomous Driving in Urban Environments: Boss and the Urban Challenge

  • Chapter
Book cover The DARPA Urban Challenge

Abstract

Boss is an autonomous vehicle that uses on-board sensors (GPS, lasers, radars, and cameras) to track other vehicles, detect static obstacles and localize itself relative to a road model. A three-layer planning system combines mission, behavioral and motion planning to drive in urban environments. The mission planning layer considers which street to take to achieve a mission goal. The behavioral layer determines when to change lanes, precedence at intersections and performs error recovery maneuvers. The motion planning layer selects actions to avoid obstacles while making progress towards local goals.

The system was developed from the ground up to address the requirements of the DARPA Urban Challenge using a spiral system development process with a heavy emphasis on regular, regressive system testing. During the National Qualification Event and the 85km Urban Challenge Final Event Boss demonstrated some of its capabilities, qualifying first and winning the challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brooks, R.: A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation 2(1), 14–23 (1986)

    Google Scholar 

  • Committee on Army Unmanned Ground Vehicle Technology and the National Research Council. Technology Development for Army Unmanned Ground Vehicles. Washington, D.C (2002)

    Google Scholar 

  • Darms, M., Winner, H.: A modular system architecture for sensor data processing of ADAS applications. In: Proceedings of IEEE Intelligent Vehicles Symposium, Las Vegas, USA, pp. 729–734 (2005)

    Google Scholar 

  • Darms, M.: Eine Basis-Systemarchitektur zur Sensordatenfusion von Umfeldsensoren Fahrerassistenzsysteme, Fortschrittb. VDI: R12, Nr. 653 (2007)

    Google Scholar 

  • Darms, M., Rybski, P., Urmson, C.: An Adaptive Model Switching Approach for a Multisensor Tracking System used for Autonomous Driving in an Urban Environment. Steuerung und Regelung von Fahrzeugen und Motoren – AUTOREG 2008, Baden Baden (February 2008)

    Google Scholar 

  • Darms, M., Baker, C., Rybksi, P., Urmson, C.: Vehicle Detection and Tracking for the Urban Challenge- The Approach taken by Tartan Racing. In: Maurer, M., Stiller, C. (eds.) 5. Workshop Fahrerassistenzsysteme FAS 2008, April 2008, FMRT, Karlsruhe (2008)

    Google Scholar 

  • Darms, M., Rybski, P., Urmson, C.: Classification and Tracking of Dynamic Objects with Multiple Sensors for Autonomous Driving in Urban Environments. In: Proceedings of the IEEE Intelligent Vehicles Symposium. Eindhoven, NL (June 2008)

    Google Scholar 

  • DARPA Urban Challenge (2007), http://www.darpa.mil/grandchallenge/index.asp

  • Daubechies, I.: Ten lectures on wavelets. Society for Industrial and Applied. Mathematics (1992)

    Google Scholar 

  • Duda, R.O., Hart, P.E.: Use of the Hough Transformation to Detect Lines and Curves in Pictures. Comm. ACM 15, 11–15 (1972)

    Article  Google Scholar 

  • Ferguson, D., Howard, T., Likhachev, M.: Motion Planning in Urban Environments (2008) (in preparation)

    Google Scholar 

  • Howard, T.M., Kelly, A.: Optimal Rough Terrain Trajectory Generation for Wheeled Mobile Robots. International Journal of Robotics Research 26(2), 141–166 (2007)

    Article  Google Scholar 

  • Huttenlocker, D., Felzenswalb, P.: Distance Transforms of Sampled Functions, Cornell Computing and Information Science Technical Report TR2004-1963 (2004)

    Google Scholar 

  • Kaempchen, N., Weiss, K., Schaefer, M., Dietmayer, K.C.J., et al.: IMM object tracking for high dynamic driving maneuvers. In: IEEE Intelligent Vehicles Symposium 2004, Parma, Italy, pp. 825–830 (June 2004)

    Google Scholar 

  • Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., Thrun, S.: Anytime Dynamic A*: An Anytime, Replanning Algorithm. In: International Conference on Automated Planning and Scheduling, ICAPS (2005)

    Google Scholar 

  • MacLachlan, R.: Tracking Moving Objects From a Moving Vehicle Using a Laser Scanner. tech. report CMU-RI-TR-05-07, Carnegie Mellon University (June 2005)

    Google Scholar 

  • Shih, M.-Y., Tseng, D.-C.: A wavelet-based multi-resolution edge detection and tracking. Image and Vision Computing 23(4), 441–451 (2005)

    Article  Google Scholar 

  • Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., Stang, P., Strohband, S., Dupont, C., Jendrossek, L.-E., Koelen, C., Markey, C., Rummel, C., van Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B., Ettinger, S., Kaehler, A., Nefian, A., Mahoney, P.: Stanley, the robot that won the DARPA Grand Challenge. Journal of Field Robotics 23(9), 661–692 (2006)

    Article  Google Scholar 

  • Urmson, C., Anhalt, J., Clark, M., Galatali, T., Gonzalez, J.P., Gowdy, J., Gutierrez, A., Harbaugh, S., Johnson-Roberson, M., Kato, H., Koon, P.L., Peterson, K., Smith, B.K., Spiker, S., Tryzelaar, E., Whittaker, W.L.: High Speed Navigation of Unrehearsed Terrain: Red Team Technology for Grand Challenge, Tech. report CMU-RI-TR-04-37, Robotics Institute, Carnegie Mellon University (2004)

    Google Scholar 

  • Urmson, C., Anhalt, J., Bartz, D., Clark, M., Galatali, T., Gutierrez, A., Harbaugh, S., Johnston, J., Kato, H., Koon, P.L., Messner, W., Miller, N., Mosher, A., Peterson, K., Ragusa, C., Ray, D., Smith, B.K., Snider, J.M., Spiker, S., Struble, J.C., Ziglar, J., Whittaker, W.L.: A Robust Approach to High-Speed Navi-gation for Unrehearsed Desert Terrain. Journal of Field Robotics 23(8), 467–508 (2006)

    Article  MATH  Google Scholar 

  • Viola, P., Jones, M.: Robust real-time object detection. In: The 2nd International Workshop on Statistical and Computational Theories of Vision-Modeling, Learning, Computing, and Sampling (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Urmson, C. et al. (2009). Autonomous Driving in Urban Environments: Boss and the Urban Challenge. In: Buehler, M., Iagnemma, K., Singh, S. (eds) The DARPA Urban Challenge. Springer Tracts in Advanced Robotics, vol 56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03991-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03991-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03990-4

  • Online ISBN: 978-3-642-03991-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics