Skip to main content

The Emerging Roles of Phospholipase C in Plant Growth and Development

  • Chapter
  • First Online:
Lipid Signaling in Plants

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 16))

Abstract

In animals, the phospholipase Cs (PLCs) are recognized as key components of signaling, being involved in transducing messages delivered by hormones, neurotransmitters, and growth factors. Owing to their central role in animal biology, plant scientists have assumed an important role for these enzymes in plants. However, only recently we have begun to reveal the complexity with which PLCs can act to modulate plant behavior. This chapter focuses on describing the kinds of PLCs so far identified in plants at the molecular level and on discussing how these enzymes regulate cellular activity. The traditional idea from mammalian research is that PLCs cleave membrane phospholipids to generate signaling-related products that then go on to regulate cellular functions through specific targets, such as protein kinase C or Ca2+-dependent signaling networks. However, while the plant enzymes also clearly act to generate signaling products, their activity towards modulating the levels of their substrates is an important emerging theme of regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo-El-Saad M, Wu R (1995) A rice membrane calcium-dependent protein kinase is induced by gibberellin. Plant Physiol 108:787–793

    Article  CAS  PubMed  Google Scholar 

  • Albi E, Lazzarini R, Viola Magni M (2008) Phosphatidylcholine/ sphingomyelin metabolism crosstalk inside the nucleus. Biochem J 410:381–389

    Article  CAS  PubMed  Google Scholar 

  • Andersson MX, Larsson KE, Tjellstrom H, Liljenberg C, Sandelius AS (2005) Phosphate-limited Oat: the plamsma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. J Biol Chem 280:27578–27586

    Article  CAS  PubMed  Google Scholar 

  • Apone F, Alyeshmerni N, Wiens K, Chalmers D, Chrispeels MJ, Colucci G (2003) The G-protein-coupled receptor GCR1 regulates DNA synthesis through activation of phosphatidylinositol-specific phospholipase C. Plant Physiol 133:571–579

    Article  CAS  PubMed  Google Scholar 

  • Blatt MR, Thiel G, Trentham DR (1990) Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1, 4, 5-trisphosphate. Nature 346:766–769

    Article  CAS  PubMed  Google Scholar 

  • Braiman A, Barda-Saad M, Sommers CL, Samelson LE (2006) Recruitment and activation of PLCgamma1 in T cells: a new insight into old domains. EMBO J 25:774–784

    Article  CAS  PubMed  Google Scholar 

  • Charron D, Pingret JL, Chabaud M, Journet EP, Barker DG (2004) Pharmacological evidence that multiple phospholipid signaling pathways link Rhizobium nodulation factor perception in Medicago truncatula root hairs to intracellular responses, including Ca2+ spiking and specific ENOD gene expression. Plant Physiol 136:3582–3593

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Cheung AY, Wu HM (2003) Actin-depolymerizing factor mediates Rac/Rop GTPase-regulated pollen tube growth. Plant Cell 15:237–249

    Article  CAS  PubMed  Google Scholar 

  • Coursol S, Pierre JN, Vidal J (2000) Role of the phosphoinositide pathway in the light-dependent C4 phosphoenolpyruvate carboxylase phosphorylation cascade in Digitaria sanguinalis protoplasts. Biochem Soc Trans 6:821–823

    Article  Google Scholar 

  • de Jong CF, Laxalt AM, Bargmann BOR, de Wit PJGM, Joosten MHAJ, Munnik T (2004) Phosphatidic acid accumulation is an early response in the Cf-4/Avr4 interaction. Plant J 39:1–12

    Article  PubMed  Google Scholar 

  • den Hartog M, Verhoef N, Munnik T (2003) Nod factor and elicitors activate different phospholipid signaling pathways in suspension-cultured alfalfa cells. Plant Physiol 132:311–317

    Article  Google Scholar 

  • Deswal R, Chowdhary GK, Sopory SK (2004) Purification and characterization of a PMA-stimulated kinase and identification of PMA-induced phosphorylation of a polypeptide that is dephosphorylated by low temperature in Brassica juncea. Biochem Biophys Res Commun 322:420–427

    Article  CAS  PubMed  Google Scholar 

  • Dowd PE, Coursol S, Skirpan AL, T-h K, Gilroy S (2006) Petunia phospholipase c1 is involved in pollen tube growth. Plant Cell 18:1438–1453

    Article  CAS  PubMed  Google Scholar 

  • Drøbak BK (1992) The plant phosphoinositide system. Biochem J 288:697–712

    PubMed  Google Scholar 

  • Drøbak BK, Watkins PAC (1994) Inositol (1, 4, 5) trisphosphate production in plant cells: stimulation by the venom peptides, Melittin and Mastoparan. Biochem Biophys Res Commun 205:739–745

    Article  PubMed  Google Scholar 

  • Engstrom EM, Ehrhardt DW, Mitra RM, Long SR (2002) Pharmacological analysis of nod factor-induced calcium spiking in Medicago truncatula. Evidence for the requirement of type IIA calcium pumps and phosphoinositide signaling. Plant Physiol 128:1390–1401

    Article  CAS  PubMed  Google Scholar 

  • Exton JH (1994) Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta 1212:26–42

    CAS  PubMed  Google Scholar 

  • Fantuzzi L, Spadaro F, Purifcato C, Cecchetti S, Podo F, Belardelli F, Gessani S, Ramoni C (2008) Phosphatidylcholine-specific phospholipase C activation is required for CCR5-dependent, NF-kB-driven CCL2 secretion elicited in response to HIV-1 gp120 in human primary macrophages. Blood 111:3355–3363

    Article  CAS  PubMed  Google Scholar 

  • Franklin-Tong VE, Drøbak BK, Allan AC, Watkins PAC, Trewavas AJ (1996) Growth of pollen tubes of Papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1, 4, 5-trisphosphate. Plant Cell 8:1305–1321

    Article  CAS  PubMed  Google Scholar 

  • Gaude N, Nakamura Y, Scheible WR, Ohta H, Dörmann P (2008) Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J 56(1):28–39

    Google Scholar 

  • Gilroy S, Read ND, Trewavas AJ (1990) Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomatal closure. Nature 346:769–771

    Article  CAS  PubMed  Google Scholar 

  • Helling D, Possart A, Cottier S, Klahre U, Kost B (2006) Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell 18:3519–3534

    Article  CAS  PubMed  Google Scholar 

  • Helsper JPFG, Heemskerk JWM, Veerkamp JH (1987) Cytosolic and particulate phosphotidylinositol phospholipase C activities in pollen tubes of Lilium longiflorum. Physiol Plant 71:120–126

    Article  CAS  Google Scholar 

  • Holdaway-Clarke TL, Hepler PK (2003) Control of pollen tube growth: role of ion gradients and fluxes. New Phytol 159:539–563

    Article  CAS  Google Scholar 

  • Hunt L, Mills LN, Pical C, Leckie CP, Aitken FL, Kopka J, Mueller-Roeber B, McAinsh MR, Hetherington AM, Gray JE (2003) Phospholipase C is required for the control of stomatal aperture by ABA. Plant J 34:47–55

    Article  CAS  PubMed  Google Scholar 

  • Jacob T, Ritchie S, Assmann SM, Gilroy S (1999) Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity. Proc Natl Acad Sci U S A 96:12192–12197

    Article  CAS  PubMed  Google Scholar 

  • Jones NP, Katan M (2007) Role of phospholipase Cgamma1 in cell spreading requires association with a beta-Pix/GIT1-containing complex, leading to activation of Cdc42 and Rac1. Mol Cell Biol 16:5790–5805

    Article  Google Scholar 

  • Katan M (2005) New insights into the families of PLC enzymes: looking back and going forward. Biochem J 391:e7–e9

    Article  Google Scholar 

  • Kates M (1955) Hydrolysis of lecithin by plant plastid enzymes. Can J Biochem Physiol 33:575–589

    CAS  PubMed  Google Scholar 

  • Kim YJ, Kim JE, Lee JH, Lee MH, Jung HW, Bahk YY, Hwang BK, Hwang I, Kim WT (2004) The Vr-PLC3 gene encodes a putative plasmamembrane-localized phosphoinositide-specific phospholipase C whose expression is induced by abiotic stress in mung bean (Vigna radiata L.). FEBS Lett 556:127–136

    Article  CAS  PubMed  Google Scholar 

  • Kopka J, Pical C, Gray JE, Muller-Rober B (1998) Molecular and enzymatic characterization of three phosphoinositide-specific phospholipase C isoforms from potato. Plant Physiol 116:239–250

    Article  CAS  PubMed  Google Scholar 

  • Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, Chua N-H (1999) Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol 145:317–330

    Article  CAS  PubMed  Google Scholar 

  • Kovar DR, Drøbak BK, Collings DA, Staiger CJ (2001) The characterization of ligand-specific maize (Zea mays) profilin mutants. Biochem J 358:49–59

    Article  CAS  PubMed  Google Scholar 

  • Krinke O, Novotná Z, Valentová O, Martinec J (2006) Inositol trisphosphate receptor in higher plants: is it real? J Exp Bot 58:361–376

    Article  PubMed  Google Scholar 

  • Kusano H, Testerink C, Vermeer JE, Tsuge T, Shimada H, Oka A, Munnik T, Aoyama T (2008) The Arabidopsis phosphatidylinositol phosphate 5-kinase PIP5K3 is a key regulator of root hair tip growth. Plant Cell 2:367–380

    Article  Google Scholar 

  • Lee Y, Assmann SM (1991) Diacylglycerols induce both ion pumping in patch-clamped guard-cell protoplasts and opening of intact stomata. Proc Natl Acad Sci U S A 88:2127–2131

    Article  CAS  PubMed  Google Scholar 

  • Lemtiri-Chlieh F, MacRobbie EAC, Webb AAR, Manison NF, Brownlee C, Skepper JN, Chen J, Prestwich GD, Brearley CA (2003) Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. Proc Natl Acad Sci U S A 100:10091–10095

    Article  CAS  PubMed  Google Scholar 

  • Malho R (1998) Role of 1, 4, 5-inositol triphosphate-induced Ca2+ release in pollen tube orientation. Sex Plant Reprod 11:231–235

    Article  CAS  Google Scholar 

  • Mills LN, Hunt L, Leckie CP, Aitken FL, Wentworth M, McAinsh MR, Gray JE, Hetherington AM (2004) The effects of manipulating phospholipase C on guard cell ABA-signaling. J Exp Bot 55:199–204

    Article  CAS  PubMed  Google Scholar 

  • Monteiro D, Liu Q, Lisboa S, Scherer GEF, Quader H, Malho R (2005) Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+]c and membrane secretion. J Exp Bot 56:1665–1674

    Article  CAS  PubMed  Google Scholar 

  • Mueller-Roeber B, Pical C (2002) Inositol phospholipid metabolism in Arabidopsis. characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol 130:22–46

    Article  CAS  PubMed  Google Scholar 

  • Munnik T, Musgrave A, de Vrije T (1994) Rapid turnover of polyphosphoinositides in carnation flower petals. Planta 193:89–98

    Article  CAS  Google Scholar 

  • Munnik T, Irvine RF, Musgrave A (1998) Phospholipid signaling in plants. Biochim Biophys Acta 1389:222–272

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Awai K, Masuda T, Yoshioka Y, K-i T, Ohta H (2005) A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J Biol Chem 280:7469–7476

    Article  CAS  PubMed  Google Scholar 

  • Nanmori T, Taguchi W, Kinugasa M, Oji Y, Sahara S, Fukami Y, Kikkawa U (1994) Purification and characterization of protein kinase C from a higher plant, Brassica campestris L. Biochem Biophys Res Commun 203:311–318

    Article  CAS  PubMed  Google Scholar 

  • Nomura H, Komori T, Kobori M, Nakahira Y, Shiina T (2008) Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. Plant J 53:988–998

    Article  CAS  PubMed  Google Scholar 

  • Otterhag L, Sommarin M, Pical C (2001) N-terminal EF-hand-like domain is required for phosphoinositide-specific phospholipase C activity in Arabidopsis thaliana. FEBS Lett 497:165–170

    Article  CAS  PubMed  Google Scholar 

  • Pan YY, Wang X, Ma LG, Sun DY (2005) Characterization of phosphatidylinositol-specific phospholipase C (PI-PLC) from Lillum daviddi pollen. Plant Cell Physiol 10:1657–1665

    Article  Google Scholar 

  • Perera IY, Heilmann I, Chang SC, Boss WF, Kaufman PB (2001) A role for inositol 1, 4, 5-trisphosphate in gravitropic signaling and the retention of cold-perceived gravistimulation of oat shoot pulvini. Plant Physiol 125:1499–1507

    Article  CAS  PubMed  Google Scholar 

  • Pical C, Kopka J, Mueller-Roeber B, Hetherington AM, Gray JE (1997) Isolation of two cDNA clones for phosphoinositide-specific phospholipase C from epidermal peels (Accession No. X95877) and guard cells (Accession No. Y11931) of Nicotiana rustica. Plant Physiol 114:748

    Google Scholar 

  • Potocký M, Eliás M, Profotová B, Novotná Z, Valentová O, Zárský V (2003) Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth. Planta 217:122–130

    PubMed  Google Scholar 

  • Scherer GFE, Paul RU, Holk A, Martinec J (2002) Down-regulation by elicitors of phosphatidylcholine-hydrolyzing phospholipase C and up-regulation of phospholipase A in plant cells. Biochem Biophys Res Commun 293:766–770

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Gonzales RA, Bhattacharyya MK (1995) Characterisation of a plasma membrane associated phosphoinositide-specific phospholipase C from soybean. Plant J 8:381–390

    Article  CAS  PubMed  Google Scholar 

  • Spadaro F, Cecchetti S, Sanchez M, Ausiello CM, Podo F, Ramoni C (2006) Expression and role of phosphatidylcholine-specific phospholipase C in human NK and T lymphocyte subsets. Eur J Immunol 36:3277–3287

    Article  CAS  PubMed  Google Scholar 

  • Stenzel I, Ischebeck T, König S, HoÅ‚ubowska A, Sporysz M, Hause B, Heilmann I (2008) The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana. Plant Cell 1:124–141

    Article  Google Scholar 

  • Swann K, Saunders CM, Rogers NT, Lai FA (2006) PLCzeta(zeta): a sperm protein that triggers Ca2+ oscillations and egg activation in mammals. Semin Cell Dev Biol 17:264–273

    Article  CAS  PubMed  Google Scholar 

  • Tang RH, Han S, Zheng H, Cook CW, Choi CS, Woerner TE, Jackson RB, Pei ZM (2007) Coupling diurnal cytosolic Ca2+ oscillations to the CAS-IP3 pathway in Arabidopsis. Science 315:1423–1426

    Article  CAS  PubMed  Google Scholar 

  • Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10:368–379

    Article  CAS  PubMed  Google Scholar 

  • Vainonen JP, Sakuragi Y, Stael S, Tikkanen M, Allahverdiyeva Y, Paakkarinen V, Aro E, Suorsa M, Scheller HV, Vener AV, Aro EM (2008) Light regulation of CaS, a novel phosphoprotein in the thylakoid membrane of Arabidopsis thaliana. FEBS J 275:1767–1777

    Article  CAS  PubMed  Google Scholar 

  • van Leeuwen W, Vermeer JE, Gadella TW Jr, Munnik T (2007) Visualization of phosphatidylinositol 4, 5-bisphosphate in the plasma membrane of suspension-cultured tobacco BY-2 cells and whole Arabidopsis seedlings. Plant J 52:1014–1026

    Article  PubMed  Google Scholar 

  • van Rheenen J, Jalink K (2002) Agonist-induced PIP2 hydrolysis inhibits cortical actin dynamics: regulation at a global but not at a micrometer scale. Mol Biol Cell 13:3257–3267

    Article  PubMed  Google Scholar 

  • Wang X (2004) Lipid signaling. Curr Opin Plant Biol 7:329–336

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Bauer CS, Zhen XG, Xie C, Yang J (2002) Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2. Nature 419:947–952

    Article  CAS  PubMed  Google Scholar 

  • Yoon GM, Dowd PE, Gilroy S, McCubbin AG (2006) Calcium-dependent protein kinase isoforms in petunia have distinct functions in pollen tube growth, including regulating polarity. Plant Cell 18:867–878

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. S. Swanson for critical reading of the manuscript. Funding from the USDA is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter E. Dowd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dowd, P.E., Gilroy, S. (2010). The Emerging Roles of Phospholipase C in Plant Growth and Development. In: Munnik, T. (eds) Lipid Signaling in Plants. Plant Cell Monographs, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03873-0_2

Download citation

Publish with us

Policies and ethics