Skip to main content

3-Phosphoinositide-Dependent Protein Kinase is a Switchboard from Signaling Lipids to Protein Phosphorylation Cascades

  • Chapter
  • First Online:
  • 1248 Accesses

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 16))

Abstract

While signal perception relies on local assembly of receptor complexes from proteins that have slow diffusion kinetics, signal propagation within cells often depend on more freely diffusible second messenger molecules, such as Ca2+, reactive oxygen species, nitric oxide within the cytoplasm, or signaling phospholipids that move only in two dimensions within lipid bilayers. These signaling systems are typically composed of the signal-dependent production of second messenger molecules with spatial and temporal dynamics and the availability of sensors that bind these molecules and decode the information. Lipid binding can activate enzymes or can recruit proteins to membranes via distinct lipid-binding domains, where the local increase in their concentration promotes interactions and downstream signaling. One such characterized downstream signaling component is the 3′-phosphoinositide-dependent kinase-1 (PDK1), that in plants, through its lipid-binding PH domain interacts and is activated by the phospholipids: phosphatidic acid and PI(4,5)P2. PDK1 is a master kinase that supervises a number of downstream protein kinases belonging to the protein kinase A, cGMP-activated kinase, and protein kinase C family (AGC kinases). These kinases typically possess a C-terminal hydrophobic motif that serves as a docking site for PDK1 to enable the phosphorylation of these kinases by PDK1 at their activation loop. These downstream kinases than can regulate a number of cellular processes, such as the localisation of auxin efflux carriers, the PINs by the pinoid kinase (PID), ROS signaling (OX1), regulation of cell death in pathogen response (ADI3), or regulation of growth and protein translation, the ribosomal S6 kinase (S6K).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alessi DR (2001) Discovery of PDK1, one of the missing links in insulin signal transduction. Colworth Medal Lecture. Biochem Soc Trans 29:1–14

    Article  CAS  PubMed  Google Scholar 

  • Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7:261–269

    Article  CAS  PubMed  Google Scholar 

  • Anthony RG et al (2004) A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO J 23:572–581

    Article  CAS  PubMed  Google Scholar 

  • Anthony RG, Khan S, Costa J, Pais MS, Bogre L (2006) The Arabidopsis protein kinase PTI1–2 is activated by convergent phosphatidic acid and oxidative stress signaling pathways downstream of PDK1 and OXI1. J Biol Chem 281:37536–37546

    Article  CAS  PubMed  Google Scholar 

  • Benjamins R, Ampudia CS, Hooykaas PJ, Offringa R (2003) PINOID-mediated signaling involves calcium-binding proteins. Plant Physiol 132:1623–1630

    Article  CAS  PubMed  Google Scholar 

  • Bettencourt-Dias M et al (2004) Genome-wide survey of protein kinases required for cell cycle progression. Nature 432:980–987

    Article  CAS  PubMed  Google Scholar 

  • Biondi RM (2004) Phosphoinositide-dependent protein kinase 1, a sensor of protein conformation. Trends Biochem Sci 29:136–142

    Article  CAS  PubMed  Google Scholar 

  • Biondi RM, Nebreda AR (2003) Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem J 372:1–13

    Article  CAS  PubMed  Google Scholar 

  • Biondi RM, Cheung PC, Casamayor A, Deak M, Currie RA, Alessi DR (2000) Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA. EMBO J 19:979–988

    Article  CAS  PubMed  Google Scholar 

  • Biondi RM, Kieloch A, Currie RA, Deak M, Alessi DR (2001) The PIF-binding pocket in PDK1 is essential for activation of S6K and SGK, but not PKB. EMBO J 20:4380–4390

    Article  CAS  PubMed  Google Scholar 

  • Bogre L, Okresz L, Henriques R, Anthony RG (2003) Growth signalling pathways in Arabidopsis and the AGC protein kinases. Trends Plant Sci 8:424–431

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Qin G, Dai X, Zhao Y (2007) NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis. Proc Natl Acad Sci USA 104:18825–18829

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Qin G, Dai X, Zhao Y (2008) NPY genes and AGC kinases define two key steps in auxin-mediated organogenesis in Arabidopsis. Proc Natl Acad Sci USA 105:21017–21022

    Article  CAS  PubMed  Google Scholar 

  • Deak M, Casamayor A, Currie RA, Downes CP, Alessi DR (1999) Characterisation of a plant 3-phosphoinositide-dependent protein kinase-1 homologue which contains a pleckstrin homology domain. FEBS Lett 451:220–226

    Article  CAS  PubMed  Google Scholar 

  • Devarenne TP, Ekengren SK, Pedley KF, Martin GB (2006) Adi3 is a Pdk1-interacting AGC kinase that negatively regulates plant cell death. EMBO J 25:255–265

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Troya S, Perez-Perez ME, Florencio FJ, Crespo JL (2008) The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 4:851–865

    CAS  PubMed  Google Scholar 

  • Friml J et al (2004) A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306:862–865

    Article  CAS  PubMed  Google Scholar 

  • Galvan-Ampudia CS, Offringa R (2007) Plant evolution: AGC kinases tell the auxin tale. Trends Plant Sci 12:541–547

    Article  CAS  PubMed  Google Scholar 

  • Hanks SK, Hunter T (1995) Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9:576–596

    CAS  PubMed  Google Scholar 

  • Hong Y, Devaiah SP, Bahn SC, Thamasandra BN, Li M, Welti R, Wang X (2009) Phospholipase D epsilon and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. Plant J 58:376–387

    Article  CAS  PubMed  Google Scholar 

  • Ikeda Y, Men S, Fischer U, Stepanova AN, Alonso JM, Ljung K, Grebe M (2009) Local auxin biosynthesis modulates gradient-directed planar polarity in Arabidopsis. Nat Cell Biol 11:731–738

    Article  CAS  PubMed  Google Scholar 

  • Jacinto E, Lorberg A (2008) TOR regulation of AGC kinases in yeast and mammals. Biochem J 410:19–37

    Article  CAS  PubMed  Google Scholar 

  • Jones AR, Kramer EM, Knox K, Swarup R, Bennett MJ, Lazarus CM, Leyser HM, Grierson CS (2009) Auxin transport through non-hair cells sustains root-hair development. Nat Cell Biol 11:78–84

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen P, Rupes I, Sharom JR, Schneper L, Broach JR, Tyers M (2004) A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 18:2491–2505

    Article  CAS  PubMed  Google Scholar 

  • Komander D, Fairservice A, Deak M, Kular GS, Prescott AR, Peter Downes C, Safrany ST, Alessi DR, van Aalten DM (2004) Structural insights into the regulation of PDK1 by phosphoinositides and inositol phosphates. EMBO J 23:3918–3928

    Article  CAS  PubMed  Google Scholar 

  • Komander D, Kular G, Deak M, Alessi DR, van Aalten DM (2005) Role of T-loop phosphorylation in PDK1 activation, stability, and substrate binding. J Biol Chem 280:18797–18802

    Article  CAS  PubMed  Google Scholar 

  • Kusano H, Testerink C, Vermeer JE, Tsuge T, Shimada H, Oka A, Munnik T, Aoyama T (2008) The Arabidopsis phosphatidylinositol phosphate 5-kinase PIP5K3 is a key regulator of root hair tip growth. Plant Cell 20:367–380

    Article  CAS  PubMed  Google Scholar 

  • Laxalt AM, Munnik T (2002) Phospholipid signalling in plant defence. Curr Opin Plant Biol 5:332–338

    Article  CAS  PubMed  Google Scholar 

  • Laxmi A, Pan J, Morsy M, Chen R (2008) Light plays an essential role in intracellular distribution of auxin efflux carrier PIN2 in Arabidopsis thaliana. PLoS One 3:e1510

    Article  Google Scholar 

  • Lee S, Hirt H, Lee Y (2001) Phosphatidic acid activates a wound-activated MAPK in Glycine max. Plant J 26:479–486

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Bak G, Choi Y, Chuang WI, Cho HT (2008) Roles of phosphatidylinositol 3-kinase in root hair growth. Plant Physiol 147:624–635

    Article  CAS  PubMed  Google Scholar 

  • Li G, Xue HW (2007) Arabidopsis PLDzeta2 regulates vesicle trafficking and is required for auxin response. Plant Cell 19:281–295

    Article  CAS  PubMed  Google Scholar 

  • Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10:307–318

    Article  PubMed  Google Scholar 

  • Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449

    Article  CAS  PubMed  Google Scholar 

  • Mahfouz MM, Kim S, Delauney AJ, Verma DP (2006) Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. Plant Cell 18:477–490

    Article  CAS  PubMed  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    Article  CAS  PubMed  Google Scholar 

  • Martin DM, Miranda-Saavedra D, Barton GJ (2009) Kinomer v. 1.0: a database of systematically classified eukaryotic protein kinases. Nucleic Acids Res 37:D244–D250

    Article  Google Scholar 

  • Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C, Robaglia C (2002) Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci USA 99:6422–6427

    Article  CAS  PubMed  Google Scholar 

  • Menges M, Doczi R, Okresz L, Morandini P, Mizzi L, Soloviev M, Murray JA, Bogre L (2008) Comprehensive gene expression atlas for the Arabidopsis MAP kinase signalling pathways. New Phytol 179:643–662

    Article  CAS  PubMed  Google Scholar 

  • Meyuhas O (2008) Physiological roles of ribosomal protein S6: one of its kind. Int Rev Cell Mol Biol 268:1–37

    Article  CAS  PubMed  Google Scholar 

  • Michniewicz M et al (2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:1044–1056

    Article  CAS  PubMed  Google Scholar 

  • Munnik T, Testerink C (2009) Plant phospholipid signaling: "in a nutshell". J Lipid Res 50(Suppl):S260–S265

    Google Scholar 

  • Ohashi Y, Oka A, Rodrigues-Pousada R, Possenti M, Ruberti I, Morelli G, Aoyama T (2003) Modulation of phospholipid signaling by GLABRA2 in root-hair pattern formation. Science 300:1427–1430

    Article  CAS  PubMed  Google Scholar 

  • Otterhag L, Gustavsson N, Alsterfjord M, Pical C, Lehrach H, Gobom J, Sommarin M (2006) Arabidopsis PDK1: identification of sites important for activity and downstream phosphorylation of S6 kinase. Biochimie 88:11–21

    Article  CAS  PubMed  Google Scholar 

  • Pascual-Ahuir A, Proft M (2007) The Sch9 kinase is a chromatin-associated transcriptional activator of osmostress-responsive genes. EMBO J 26:3098–3108

    Article  CAS  PubMed  Google Scholar 

  • Pedley KF, Martin GB (2004) Identification of MAPKs and their possible MAPK kinase activators involved in the Pto-mediated defense response of tomato. J Biol Chem 279:49229–49235

    Article  CAS  PubMed  Google Scholar 

  • Pende M et al (2004) S6K1-/-/S6K2-/- mice exhibit perinatal lethality and rapamycin-sensitive 5′-Terminal Oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol 24:3112–3124

    Article  CAS  PubMed  Google Scholar 

  • Petersen J, Nurse P (2007) TOR signalling regulates mitotic commitment through the stress MAP kinase pathway and the Polo and Cdc2 kinases. Nat Cell Biol 9:1263–1272

    Article  CAS  PubMed  Google Scholar 

  • Quackenbush J (2003) Genomics. Microarrays–guilt by association. Science 302:240–241

    Article  CAS  PubMed  Google Scholar 

  • Rentel MC et al (2004) OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427:858–861

    Article  CAS  PubMed  Google Scholar 

  • Robert HS, Offringa R (2008) Regulation of auxin transport polarity by AGC kinases. Curr Opin Plant Biol 11:495–502

    Article  CAS  PubMed  Google Scholar 

  • Robert HS, Quint A, Brand D, Vivian-Smith A, Offringa R (2008) BTB AND TAZ DOMAIN scaffold proteins perform a crucial function in Arabidopsis development. Plant J

    Google Scholar 

  • Robert HS, Quint A, Brand D, Vivian-Smith A, Offringa R (2009) BTB AND TAZ DOMAIN scaffold proteins perform a crucial function in Arabidopsis development. Plant J 58:109–121

    Google Scholar 

  • Roosen J et al (2005) PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability. Mol Microbiol 55:862–880

    Article  CAS  PubMed  Google Scholar 

  • Ruvinsky I, Sharon N, Lerer T, Cohen H, Stolovich-Rain M, Nir T, Dor Y, Zisman P, Meyuhas O (2005) Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev 19:2199–2211

    Article  CAS  PubMed  Google Scholar 

  • Santner AA, Watson JC (2006) The WAG1 and WAG2 protein kinases negatively regulate root waving in Arabidopsis. Plant J 45:752–764

    Article  CAS  PubMed  Google Scholar 

  • Silber J, Antal TL, Gammeltoft S, Rasmussen TE (2004) Phosphoinositide-dependent kinase-1 orthologues from five eukaryotes are activated by the hydrophobic motif in AGC kinases. Biochem Biophys Res Commun 321:823–827

    Article  CAS  PubMed  Google Scholar 

  • Smets B, De Snijder P, Engelen K, Joossens E, Ghillebert R, Thevissen K, Marchal K, Winderickx J (2008) Genome-wide expression analysis reveals TORC1-dependent and -independent functions of Sch9. FEMS Yeast Res 8:1276–1288

    Article  CAS  PubMed  Google Scholar 

  • Steffen KK et al (2008) Yeast life span extension by depletion of 60S Ribosomal subunits is mediated by Gcn4. Cell 133:292–302

    Article  CAS  PubMed  Google Scholar 

  • Storz P, Toker A (2002) 3′-phosphoinositide-dependent kinase-1 (PDK-1) in PI 3-kinase signaling. Front Biosci 7:d886–d902

    Article  Google Scholar 

  • Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241–1244

    Article  CAS  PubMed  Google Scholar 

  • Tokutomi S, Matsuoka D, Zikihara K (2008) Molecular structure and regulation of phototropin kinase by blue light. Biochim Biophys Acta 1784:133–142

    CAS  PubMed  Google Scholar 

  • Turck F, Kozma SC, Thomas G, Nagy F (1998) A heat-sensitive Arabidopsis thaliana kinase substitutes for human p70s6k function in vivo. Mol Cell Biol 18:2038–2044

    CAS  PubMed  Google Scholar 

  • Turck F, Zilbermann F, Kozma SC, Thomas G, Nagy F (2004) Phytohormones participate in an S6 Kinase signal transduction pathway in Arabidopsis. Plant Physiol 134:1527–1535

    Article  CAS  PubMed  Google Scholar 

  • Urban J et al (2007) Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26:663–674

    Article  CAS  PubMed  Google Scholar 

  • van der Luit AH, Piatti T, van Doorn A, Musgrave A, Felix G, Boller T, Munnik T (2000) Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate. Plant Physiol 123:1507–1516

    Article  PubMed  Google Scholar 

  • Waite KA, Wallin R, Qualliotine-Mann D, McPhail LC (1997) Phosphatidic acid-mediated phosphorylation of the NADPH oxidase component p47-phox. Evidence that phosphatidic acid may activate a novel protein kinase. J Biol Chem 272:15569–15578

    Article  CAS  PubMed  Google Scholar 

  • Wick MJ, Ramos FJ, Chen H, Quon MJ, Dong LQ, Liu F (2003) Mouse 3-phosphoinositide-dependent protein kinase-1 undergoes dimerization and trans-phosphorylation in the activation loop. J Biol Chem 278:42913–42919

    Article  CAS  PubMed  Google Scholar 

  • Williams AJ, Werner-Fraczek J, Chang IF, Bailey-Serres J (2003) Regulated phosphorylation of 40S ribosomal protein S6 in root tips of maize. Plant Physiol 132:2086–2097

    Article  CAS  PubMed  Google Scholar 

  • Woodgett JR (2005) Recent advances in the protein kinase B signaling pathway. Curr Opin Cell Biol 17:150–157

    Article  CAS  PubMed  Google Scholar 

  • Wu MY, Cully M, Andersen D, Leevers SJ (2007) Insulin delays the progression of Drosophila cells through G2/M by activating the dTOR/dRaptor complex. EMBO J 26:371–379

    Article  CAS  PubMed  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    Article  CAS  PubMed  Google Scholar 

  • Zegzouti H, Anthony RG, Jahchan N, Bogre L, Christensen SK (2006a) Phosphorylation and activation of PINOID by the phospholipid signaling kinase 3-phosphoinositide-dependent protein kinase 1 (PDK1) in Arabidopsis. Proc Natl Acad Sci USA 103:6404–6409

    Article  CAS  PubMed  Google Scholar 

  • Zegzouti H, Li W, Lorenz TC, Xie M, Payne CT, Smith K, Glenny S, Payne GS, Christensen SK (2006b) Structural and functional insights into the regulation of Arabidopsis AGC VIIIa kinases. J Biol Chem 281:35520–35530

    Article  CAS  PubMed  Google Scholar 

  • Zhang SH, Lawton MA, Hunter T, Lamb CJ (1994) atpk1, a novel ribosomal protein kinase gene from Arabidopsis. I. Isolation, characterization, and expression. J Biol Chem 269:17586–17592

    CAS  PubMed  Google Scholar 

  • Zourelidou M, Muller I, Willige BC, Nill C, Jikumaru Y, Li H, Schwechheimer C (2009) The polarly localized D6 PROTEIN KINASE is required for efficient auxin transport in Arabidopsis thaliana. Development 136:627–636

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Bögre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zalejski, C., Bögre, L. (2010). 3-Phosphoinositide-Dependent Protein Kinase is a Switchboard from Signaling Lipids to Protein Phosphorylation Cascades. In: Munnik, T. (eds) Lipid Signaling in Plants. Plant Cell Monographs, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03873-0_16

Download citation

Publish with us

Policies and ethics