Skip to main content

Relating Coalgebraic Notions of Bisimulation

with Applications to Name-Passing Process Calculi (Extended Abstract)

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5728))

Abstract

A labelled transition system can be understood as a coalgebra for a particular endofunctor on the category of sets. Generalizing, we are led to consider coalgebras for arbitrary endofunctors on arbitrary categories.

Bisimulation is a crucial notion in the theory of labelled transition systems. We identify four definitions of bisimulation on general coalgebras. The definitions all specialize to the same notion for the special case of labelled transition systems. We investigate general conditions under which the four notions coincide.

As an extended example, we consider the semantics of name-passing process calculi (such as the pi-calculus), and present a new coalgebraic model for name-passing calculi.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramsky, S.: A domain equation for bisimulation. Inform. and Comput. 92, 161–218 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abramsky, S.: A cook’s tour of the finitary non-well-founded sets. In: We Will Show Them! Essays in Honour of Dov Gabbay, vol. 1, pp. 1–18 (2005)

    Google Scholar 

  3. Aczel, P., Mendler, N.: A final coalgebra theorem. In: Proc. of CTCS 1989, pp. 357–365 (1989)

    Google Scholar 

  4. Adámek, J.: Introduction to coalgebra. Theory Appl. of Categ. 14(8), 157–199 (2005)

    MathSciNet  MATH  Google Scholar 

  5. van den Berg, B., Marchi, F.D.: Models of non-well-founded sets via an indexed final coalgebra theorem. J. Symbolic Logic 72(3), 767–791 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bezhanishvili, N., Fontaine, G., Venema, Y.: Vietoris bisimulations. J. Logic Comput. (2008) (to appear)

    Google Scholar 

  7. Borceux, F.: Handbook of Categorical Algebra. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  8. van Breugel, F., Hermida, C., Makkai, M., Worrell, J.B.: An accessible approach to behavioural pseudometrics. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1018–1030. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Carboni, A., Kelly, G.M., Wood, R.J.: A 2-categorical approach to geometric morphisms I. Cah. Topol. Géom. Différ. Catég. XXXII(1), 47–95 (1991)

    Google Scholar 

  10. Carboni, A., Lack, S., Walters, R.F.C.: Introduction to extensive and distributive categories. J. Pure Appl. Algebra 83, 145–158 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cousot, P., Cousot, R.: Constructive versions of Tarski’s fixed point theorems. Pacific J. Math. 82(1), 43–57 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Danos, V., Desharnais, J., Laviolette, F., Panangaden, P.: Bisimulation and cocongruence for probabilistic systems. Inform. and Comput. 204(4), 503–523 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ferrari, G., Montanari, U., Pistore, M.: Minimizing transition systems for name passing calculi: A co-algebraic formulation. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 129–158. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Fiore, M.P., Staton, S.: Comparing operational models of name-passing process calculi. Inform. and Comput. 204(4), 435–678 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fiore, M.P., Staton, S.: A congruence rule format for name-passing process calculi from mathematical structural operational semantics. In: Proc. of LICS 2006, pp. 49–58 (2006)

    Google Scholar 

  16. Fiore, M.P., Turi, D.: Semantics of name and value passing (extended abstract). In: Proc. of LICS 2001, pp. 93–104 (2001)

    Google Scholar 

  17. Gabbay, M.J., Hofmann, M.: Nominal renaming sets. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 158–173. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Aspects of Computing 13, 341–363 (2001)

    Article  MATH  Google Scholar 

  19. Gadducci, F., Miculan, M., Montanari, U.: About permutation algebras (pre)sheaves and named sets. Higher-Order Symb. Comput. 19(2–3), 283–304 (2006)

    Article  MATH  Google Scholar 

  20. Ghani, N., Yemane, K., Victor, B.: Relationally staged computations in calculi of mobile processes. In: Proc. of CMCS 2004, pp. 105–120 (2004)

    Google Scholar 

  21. Gumm, H.P.: Functors for coalgebras. Algebra Univers 45, 135–147 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational setting. Inform. and Comput. 145(2), 107–152 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jacobs, B., Rutten, J.: A tutorial on coalgebras and coinduction. EATCS Bulletin 62, 222–259 (1997)

    MATH  Google Scholar 

  24. Johnstone, P., Power, J., Tsujishita, T., Watanabe, H., Worrell, J.: On the structure of categories of coalgebras. Theoret. Comput. Sci. 260(1-2), 87–117 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  26. Joyal, A., Moerdijk, I.: Algebraic Set Theory. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  27. Kelly, G.M., Power, A.J.: Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads. J. Pure Appl. Algebra 89(1–2), 163–179 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Klin, B.: Adding recursive constructs to bialgebraic semantics. J. Log. Algebr. Program. 61, 259–286 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kupke, C., Kurz, A., Venema, Y.: Stone coalgebras. Theoret. Comput. Sci. 327(1-2), 109–134 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kurz, A.: Logics for Coalgebras and Applications to Computer Science. PhD thesis, Ludwig-Maximilians-Universität München (2000)

    Google Scholar 

  31. Miculan, M., Yemane, K.: A unifying model of variables and names. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 170–186. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  32. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)

    Book  MATH  Google Scholar 

  33. Milner, R.: Calculi for synchrony and asynchrony. Theoret. Comput. Sci. 25, 267–310 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I and II. Inform. and Comput. 100(1), 1–77 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Plotkin, G.D.: Bialgebraic semantics and recursion (extended abstract). In: Proc. of CMCS 2001. Electron. Notes Theor. Comput. Sci, vol. 44(1), pp. 1–4 (2001)

    Google Scholar 

  36. Rutten, J.J.M.M.: Relators and metric bisimulations. In: Proc. of CMCS 1998. Electron. Notes Theor. Comput. Sci, vol. 11 (1998)

    Google Scholar 

  37. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoret. Comput. Sci. 249(1), 3–80 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sangiorgi, D.: A theory of bisimulation for the π-calculus. Acta Inform 33(1), 69–97 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sangiorgi, D., Walker, D.: The π-calculus: a theory of mobile processes. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  40. Staton, S.: Name-passing process calculi: operational models and structural operational semantics. PhD thesis, University of Cambridge (2007)

    Google Scholar 

  41. Staton, S.: General structural operational semantics through categorical logic. In: Proc. of LICS 2008, pp. 166–177 (2008)

    Google Scholar 

  42. Viglizzo, I.D.: Final sequences and final coalgebras for measurable spaces. In: Fiadeiro, J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629, pp. 395–407. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  43. de Vink, E.P., Rutten, J.J.M.M.: Bisimulation for probabilistic transition systems: a coalgebraic approach. Theoret. Comput. Sci. 221, 271–293 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. Worrell, J.: On the final sequence of a finitary set functor. Theoret. Comput. Sci. 338, 184–199 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Staton, S. (2009). Relating Coalgebraic Notions of Bisimulation. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds) Algebra and Coalgebra in Computer Science. CALCO 2009. Lecture Notes in Computer Science, vol 5728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03741-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03741-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03740-5

  • Online ISBN: 978-3-642-03741-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics