Skip to main content

The Nature of Georeferenced Data

  • Chapter
  • First Online:

Abstract

Georeferenced data or spatial data (we use the terms interchangeably here) come in many forms. Geometrically speaking, such data refer either to points, lines or areas – spatial objects or features. Spatial interaction data record flows between the nodes (intersection points) of a network. These data are captured in an origindestination matrix where the number of rows and columns of the matrix correspond to the nodes of the network and the entry on row i and column j records the total flow from node i to node j (Fischer 2000). Spatial tracking data records the movement of individuals (or groups) over time between areas or the nodes of a network (Goodchild 1998; Frank et al. 2001). The rows of the tracking matrix are the individuals, the columns are time periods and the entry on row i and column j records the location of individual i in time period j. These data can be used to estimate transition matrices where the entry on row i and column j of the transition matrix records the probability of any individual going from area i to area j in an interval of time (Wilson and Bennett 1985, pp.107-109 and pp.250-280). In these two cases the spatial objects (nodes, network links, areas) remain fixed – and motion takes place over this static spatial backdrop – but over time the point, line and area features themselves can for example move, grow, shrink, split and change form (Frank 2001).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrienko GL, Andrienko NV (1999) Interactive maps for visual data exploration. Int J Geogr Inform Sci 13(4):355–374

    Article  Google Scholar 

  • Anselin L (1988) Spatial econometrics. Kluwer, Dordrecht

    Google Scholar 

  • Anselin L (1995) Local indicators of spatial association – LISA. Geogr Anal 27(2):93–115

    Google Scholar 

  • Anselin L, Griffith D (1988) Do spatial effects really matter in regression analysis? Papers of the Reg Sci Assoc 65(1):11–34

    Article  Google Scholar 

  • Assunção RM, Reis EA (1999) A new proposal to adjust Moran's I for population density. Stat Med 18(16):2147–2162

    Article  Google Scholar 

  • Banerjee S, Carlin BP, Gelfand AE (2004) Hierarchical modeling and analysis for spatial data. CRC Press (Taylor and Francis Group), Boca Raton [FL], London and New York

    Google Scholar 

  • Bartlett MS (1964) The spectral analysis of two dimensional point processes. Biometrika 51(3–4):299–311

    Google Scholar 

  • Bierkens MFP, Finke PA, de Willigen P (2000) Upscaling and downscaling methods for environmental research. Kluwer, Dordrecht

    Google Scholar 

  • Brooks-Gunn J, Duncan GJ, Klebanov PK, Sealand N (1993) Do neighborhoods influence child and adolescent development? Am J Soc 99:353–395

    Article  Google Scholar 

  • Brunsdon C, Fotheringham AS, Charlton M (1998) Geographically weighted regression. The Statistician 47(3):431–443

    Google Scholar 

  • Burrough PA, McDonnell RA (1998) Principles of geographical information systems. Oxford University Press, Oxford

    Google Scholar 

  • Choynowski M (1959) Maps based on probabilities. J Am Stat Assoc 54:385–388

    Article  Google Scholar 

  • Cliff AD, Ord JK (1973) Spatial autocorrelation. Pion, London

    Google Scholar 

  • Clifford P, Richardson S (1985) Testing the association between two spatial processes. Statistics and Decisions 2:155–160

    Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data (revised edition). Wiley, New York, Chichester, Toronto and Brisbane

    Google Scholar 

  • Dacey MF (1968) A review of measures of contiguity for two and k-color maps. In Berry BJL, DMarble (eds) Spatial analysis. Prentice-Hall, Englewood Cliffs [NJ], pp. 479–495

    Google Scholar 

  • Dorling D (1994) Cartograms for visualizing human geography. In Earnshaw HM, Unwin D (eds) Visualization in Geographic Information Systems. Wiley, New York, pp. 85–102

    Google Scholar 

  • Fieguth PW, Karl WC, Willsky AS, Wunsch C (1995) Multiresolution optimal interpolation and statistical analysis of TOPEX/POSEIDON satellite altimetry. IEEE Transact Geosci Remote Sens 33(2):280–292

    Article  Google Scholar 

  • Fischer MM (2000) Spatial interaction models and the role of geographic information systems. In Fotheringham AS, Wegener M (eds) Spatial models and GIS. Taylor and Francis, London, pp. 33–43

    Google Scholar 

  • Fisher R (1935) The design of experiments. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Forster BC (1980) Urban residential ground cover using LANDSAT digital data. Photog Eng Remote Sens 46:447–458

    Google Scholar 

  • Frank AU (2001) Socio-economic units: their life and motion. In Frank AU, Raper J, Cheylan JP (eds) Life and motion of socio-economic units. Taylor and Francis, London, pp. 21–34

    Google Scholar 

  • Frank AU, Raper J, Cheylan J-P (2001) Life and motion of socio-economic units. Taylor and Francis, London

    Google Scholar 

  • Gabrosek J, Huang H-C, Cressie NAC (1999) Spatio-temporal prediction of level 3 data for NASA's earth observing system. In Lowell K, Jaton A (eds) Spatial accuracy assessment: land information uncertainty in natural resources. Ann Arbor Press, Chelsea [MI], pp. 331–337

    Google Scholar 

  • Geary RC (1954) The contiguity ratio and statistical mapping. The Incorp Stat 5(3):115–145

    Article  Google Scholar 

  • Gehlke CE, Biehl K (1934) Certain effects of grouping upon the size of the correlation co-efficient in census tract material. J Am Stat Assoc 29:169–170

    Article  Google Scholar 

  • Gelman A, Price PN (1999) All maps of parameter estimates are misleading. Stat Med 18(23):3221–3234

    Article  Google Scholar 

  • Godambe VP, Thompson ME (1971) Bayes, fiducial and frequency aspects of statistical inference in regression analysis in survey sampling. J Roy Stat Soc, Series B33:361–390

    Google Scholar 

  • Goodchild MF (1989) Modelling error in objects and fields. In Goodchild MF, Gopal S (eds) Accuracy of spatial databases. Taylor and Francis, London, pp. 107–113

    Google Scholar 

  • Goodchild MF (1998) Geographic information systems and disaggregate transportation modeling. J Geogr Syst 5(1–2):19–44

    Google Scholar 

  • Goodchild MF, Haining RP (2004) GIS and spatial data analysis: converging perspectives. Papers in Reg Sci 83(1):363–385

    Article  Google Scholar 

  • Goodchild MF, Lam NSM (1980) Areal interpolation: a variant of the traditional spatial problem. Geo-Processing 1:297–312

    Google Scholar 

  • Goovaerts P (2006) Geostatistical analysis of disease data: accounting for spatial support and population density in the isopleths mapping of cancer mortality risk using area to point kriging. Int J Health Geographics 5:52

    Article  Google Scholar 

  • Goovaerts P (2008) Kriging and semi-variogram deconvolution in the presence of irregular geographical units. Math Geosci 40(1):101–128

    Article  Google Scholar 

  • Gotway CA Young LJ (2002) Combining incompatible spatial data. J Am Stat Assoc 97:632–648

    Article  Google Scholar 

  • Granger CWJ (1969) Spatial data and time series analysis. In Scott AJ (ed), Studies in Regional Science. Pion, London, pp. 1–24

    Google Scholar 

  • Guptill SC, Morrison JL (1995) Elements of spatial data quality. Elsevier Science, Oxford

    Google Scholar 

  • Haining RP (1978) Interaction modeling on central place lattices. J Reg Sci 18(2):217–228

    Article  Google Scholar 

  • Haining RP (1988) Estimating spatial means with an application to remotely sensed data. Comm Stat Theor Meth 17(2):573–597

    Article  Google Scholar 

  • Haining RP (2003) Spatial data analysis: theory and practice. Cambridge University Press, Cambridge

    Google Scholar 

  • Haining RP, Arbia G (1993) Error propagation through map operations. Technometrics 35(3):293–305

    Article  Google Scholar 

  • Haining RP, Wise S, Ma J (1998) Exploratory spatial data analysis in a geographic information system environment. The Statistician 47(3):457–469

    Google Scholar 

  • Hipp JR (2007) Block, tract, and levels of aggregation: neighborhood structure and crime and disorder as a case in point. Am Soc Rev 72(5):659–680

    Google Scholar 

  • Jackson C, Best N, Richardson S (2008) Hierarchical related regression for combining aggregate and individual data in studies of socio-economic disease risk factors. J Roy Stat Soc A 171:159–178

    Google Scholar 

  • Jelinski DE, Wu J (1996) The modifiable areal unit problem and implications for landscape ecology. Landscape Ecology 11(3):129–140

    Article  Google Scholar 

  • King G (1997) A solution to the ecological inference problem: reconstructing individual behaviour from aggregate data. Princeton University Press, Princeton [N.J.]

    Google Scholar 

  • Krishna-Iyer PV (1949) The first and second moments of some probability distributions arising from points on a lattice and their applications. Biometrika 36(1–2):135–141

    Google Scholar 

  • Kulldorff M (1997) A spatial scan statistic. Comm Stat Theor Meth 26(6):1481–1496

    Article  Google Scholar 

  • Kulldorff M (1998) Statistical methods for spatial epidemiology: tests for randomness. In Gatrell A, Löytönnen M (eds) GIS and health. Taylor and Francis, London, pp. 49–62

    Google Scholar 

  • McCarthy HH, Hook JC, Knos DS (1956) The measurement of association in industrial geography. Department of Geography, State University of Iowa, Iowa City

    Google Scholar 

  • Marceau DJ (1999) The scale issue in social and natural sciences. Canad J Rem Sens 25(4):347–356

    Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58(8):1246–1266

    Article  Google Scholar 

  • Monmonier MS (1989) Geographic brushing: enhancing exploratory analysis of the scatterplot matrix. Geogr Anal 21(1):81–84

    Google Scholar 

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37(12):17–23

    Google Scholar 

  • Olea RA (1991) Geostatistical glossary and multilingual dictionary. Oxford University Press, New York

    Google Scholar 

  • Openshaw S, Taylor PJ (1979) A million or so correlation coefficients: three experiments on the modifiable areal units problem. In Wrigley N (ed) Statistical applications in the spatial sciences. Pion, London, pp. 127–144

    Google Scholar 

  • Openshaw S, Charlton M, Wymer C, Craft A (1987) A mark 1 geographical analysis machine for the automated analysis of point data sets. Int J Geogr Inform Syst 1(4):335–358

    Article  Google Scholar 

  • Robinson WS, (1950) Ecological correlations and the behavior of individuals. Am Socl Rev 15(3):351–357

    Article  Google Scholar 

  • Sampson RJ, Raudenbush SW, Earls F (1997) Neighborhoods and violent crime: a multilevel study of collective efficacy. Science 277:918–924

    Article  Google Scholar 

  • Student (1914) The elimination of spurious correlation due to position in time or space. Biometrika 10(1):179–180

    Article  Google Scholar 

  • Taylor JR (1982) An introduction to error analysis. University Science Books, Mill Valley [CA]

    Google Scholar 

  • Tobler W (1990) Frame independent spatial analysis. In Goodchild MMF, Gopal S (eds) Accuracy of spatial databases. Taylor and Francis, London, pp. 115–122

    Google Scholar 

  • Veregin H, Hargitai P (1995) An evaluation matrix for geographical data quality. In Guptill SC, Morrison JL (eds) Elements of spatial data quality. Elsevier Science, Oxford, pp. 167–188

    Google Scholar 

  • Wikle CK (2003) Hierarchical models in environmental science. Int Stat Rev 71(2):181–199

    Google Scholar 

  • Wikström PO, Loeber R (2000) Do disadvantaged neighborhoods cause well-adjusted children to become adolescent delinquents? A study of male juvenile serious offending, individual risk and protective factors and neighborhood context. Criminology 38(4):1109–1142

    Article  Google Scholar 

  • Wilson AG, Bennett RJ (1985) Mathematical methods in human geography and planning. Wiley, New York, Chichester, Toronto and Brisbane

    Google Scholar 

  • Wu J, Loucks OL (1995) From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Quart Rev Biol 70(4):439–466

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Haining .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haining, R.P. (2010). The Nature of Georeferenced Data. In: Fischer, M., Getis, A. (eds) Handbook of Applied Spatial Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03647-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03647-7_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03646-0

  • Online ISBN: 978-3-642-03647-7

  • eBook Packages: Business and EconomicsEconomics and Finance (R0)

Publish with us

Policies and ethics