Skip to main content

Malassezia Fungemia, Antifungal Susceptibility Testing and Epidemiology of Nosocomial Infections

  • Chapter
Malassezia and the Skin

Core Messages

Malassezia catheter-related fungemia, and invasive infections in critically ill, premature neonates and immunocompromised individuals of all ages are issues addressed in relation to risk factors, host-pathogen interactions, pathogenesis, management, and outcome. The epidemiology of drug resistance of isolates from deep tissues, biological fluids, and skin is highlighted by assessing Malassezia susceptibility to conventional antifungals, synthetic, and naturally occurring compounds. Yet, lack of stan­dardization for Malassezia susceptibility testing restricts associations of in vitro with in vivo responses to antifungals. The chapter also describes the capacity of PCR fingerprinting, pulsed field gel electrophoresis (PFGE), and amplified fragment length polymorphism (AFLP) analysis to dependably identify nosocomial outbreaks, but concludes that robust analytical methods such as multilocus sequence typing (MLST) would be required to resolve global Malassezia epidemiological issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barber GR, Brown AE, Kiehn TE et al (1993) Catheter-related Malassezia furfur fungemia in immunocompromised patients. Am J Med 95:365-370

    Article  PubMed  CAS  Google Scholar 

  2. Chryssanthou E, Broberger U, Petrini B (2001) Malassezia pachydermatis fungaemia in a neonatal intensive care unit. Acta Paediatr 90:323-327

    Article  PubMed  CAS  Google Scholar 

  3. Dankner WM, Spector SA, Fierer J et al (1987) Malassezia fungemia in neonates and adults: complication of hyperalimentation. Rev Infect Dis 9:743-753

    Article  PubMed  CAS  Google Scholar 

  4. Groll AH, Walsh TJ (2001) Uncommon opportunistic fungi: new nosocomial threats. Clin Microbiol Infect 7(suppl 2):8-24

    Article  PubMed  CAS  Google Scholar 

  5. Shattuck KE, Cochran CK, Zabransky RJ et al (1996) Colonization and infection associated with Malassezia and Candida species in a neonatal unit. J Hosp Infect 34:123-129

    Article  PubMed  CAS  Google Scholar 

  6. Redline RW, Dahms BB (1981) Malassezia pulmonary vasculitis in an infant on long-term intralipid therapy. N Engl J Med 305:1395-1398

    Article  PubMed  CAS  Google Scholar 

  7. Alpert G, Bell LM, Campos JM (1987) Malassezia furfur fungemia in infancy. Clin Pediatr 26:528-531

    Article  CAS  Google Scholar 

  8. Aschner JL, Punsalang A, Maniscalo W et al (1987) Percutaneous central venous catheter colonization with Malassezia furfur: incidence and clinical significance. Pediatrics 80:535-539

    PubMed  CAS  Google Scholar 

  9. Cannizzo FT, Eraso E, Ezkurra PA et al (2007) Biofilm development by clinical isolates of Malassezia pachydermatis. Med Mycol 45:357-361

    Article  PubMed  Google Scholar 

  10. Powell DA, Aungst J, Snedden S et al (1984) Broviac catheter-related Malassezia furfur sepsis in five infants receiving intravenous fat emulsions. J Pediatr 105:987-990

    Article  PubMed  CAS  Google Scholar 

  11. Redline RW, Redline SS, Boxerbaum B et al (1985) Systemic Malassezia furfur infections in patients receiving intralipid therapy. Hum Pathol 16:815-822

    Article  PubMed  CAS  Google Scholar 

  12. Chang HJ, Miller H, Watkins N et al (1998) An epidemic of Malassezia pachydermatis in an intensive care nursery associated with colonization of health care workers’ pet dogs. New Engl J Med 338:706-711

    Article  PubMed  CAS  Google Scholar 

  13. Surmont I, Gavilanes A, Vandepitte J, et al (1989) Malassezia furfur fungaemia in infants receiving intravenous lipid emulsions. A rarity or just underestimated? Eur J Pediatr 148:435-438

    Article  PubMed  CAS  Google Scholar 

  14. Welbel SF, McNeil MM, Pramanik A et al (1994) Nosocomial Malassezia pachydermatis bloodstream infections in a neonatal intensive care unit. Pediatr Infect Dis J 13:104-108

    Article  PubMed  CAS  Google Scholar 

  15. Morrison VA, Weisdorf DJ (2000) The spectrum of Malassezia infections in the bone marrow transplant population. Bone Marrow Transplant 26:645-648

    Article  PubMed  CAS  Google Scholar 

  16. Schleman KA, Tullis G, Blum R (2000) Intracardiac mass complicating Malassezia furfur fungemia. Chest 118:1828-1829

    Article  PubMed  CAS  Google Scholar 

  17. Schoepfer C, Carla H, Bezou MJ et al (1995) Malassezia furfur septicemia after bone marrow graft. Arch Pediatr 2:245-248

    Article  PubMed  CAS  Google Scholar 

  18. Shparago NI, Bruno PP, Bennett J (1995) Systemic Malassezia furfur infection in an adult receiving total parenteral nutrition. J Am Osteopath Assoc 6:375-377

    Google Scholar 

  19. Weiss SJ, Schoch PE, Cuhna BA (1991) Malassezia furfur fungemia associated with central venous catheter lipid emulsion infusion. Heart Lung 20:87-90

    PubMed  CAS  Google Scholar 

  20. Masure O, Minoui A, Legall P et al (1997) Etude prospective de la colonisation des catheters vasculaires par les levures Malassezia. J Mycol Méd 7:33-36

    Google Scholar 

  21. Sizun J, Karangwa A, Giroux JD et al (1994) Malassezia furfur-related colonization and infection of central venous catheters. A prospective study in a pediatric intensive care unit. Intensive Care Med 20:496-499

    Article  PubMed  CAS  Google Scholar 

  22. Curvale-Fauchet N, Botterel F, Legrand P et al (2004) Frequency of intravascular catheter colonization by Malassezia spp. in adult patients. Mycoses 47:491-494

    Article  PubMed  Google Scholar 

  23. Bell LM, Alpert G, Slight PH et al (1985) Skin colonization of hospitalized and non- hospitalized infants with lipophilic yeasts. Abstr ICAAC 519 25th ICAAC, 29 September - 2 October, Minneapolis, Minnesota, USA

    Google Scholar 

  24. Ahtonen P, Lehtonen OP, Kero P et al (1990) Malassezia furfur colonization of neonates in an intensive care unit. Mycoses 33:543-547

    PubMed  CAS  Google Scholar 

  25. Ashbee HR, Leck AK, Puntis JW et al (2002) Skin colonization by Malassezia in neonates and infants. Infect Control Hosp Epidemiol 23:212-216

    Article  PubMed  Google Scholar 

  26. Maki DG (1982) Infections associated with intravascular lines. In: Remington JS, Swartz MN (eds) Current clinical topics in infectious diseases, 3rd edn. McGraw-Hill, New York, pp 309-363

    Google Scholar 

  27. Van Belkum A, Boekhout T, Bosboom R (1994) Monitoring spread of Malassezia infections in a neonatal intensive care unit by PCR-mediated genetic typing. J Clin Microbiol 32: 2528-2532

    PubMed  Google Scholar 

  28. Ashbee HR, Evans EG (2002) Immunology of diseases associated with Malassezia species. Clin Microbiol Rev 15:21-57

    Article  PubMed  CAS  Google Scholar 

  29. Powell DA, Marcon MJ, Durrell DE et al (1987) Scanning electron microscopy of Malassezia furfur attachment to Broviac catheters. Hum Pathol 18:740-745

    Article  PubMed  CAS  Google Scholar 

  30. Marcon MJ, Powell DA (1987) Epidemiology, diagnosis, and management of Malassezia furfur systemic infection. Diagn Microbiol Infect Dis 7:161-175

    Article  PubMed  CAS  Google Scholar 

  31. Marcon MJ, Durrell DE, Powell DA et al (1987) In vitro activity of systemic antifungal agents against Malassezia furfur. Antimicrob Agents Chemother 31:951-953

    Article  PubMed  CAS  Google Scholar 

  32. Pappas PG, Rex JH, Sobel JD et al (2004) Guidelines for treatment of candidiasis. Clin Infect Dis 38:161-189

    Article  PubMed  Google Scholar 

  33. Marcon MJ, Powell DA (1992) Human infections due to Malassezia spp. Clin Microbiol Rev 2:101-119

    Google Scholar 

  34. Shek YH, Tucker MC, Viciana AL et al (1989) Malassezia furfur disseminated infection in premature infants. Am J Clin Pathol 92:595-603

    PubMed  CAS  Google Scholar 

  35. Devlin RK (2006) Invasive fungal infections caused by Candida and Malassezia species in them neonatal intensive care unit. Adv Neonatal Care 6:68-77

    Article  PubMed  Google Scholar 

  36. Zomorodian K, Mirhendi H, Tarazooie B et al (2008) Molecular analysis of Malassezia species isolated from hospitalized neonates. Pediatr Dermatol 25:312-316

    Article  Google Scholar 

  37. Masure O, Leostic C, Abalain ML et al (1991) Malassezia furfur septicaemia in a child with leukaemia. J Infect 23:335-336

    Article  PubMed  CAS  Google Scholar 

  38. Middleton C, Lowenthal RM (1987) Malassezia furfur fungemia as a treatable cause of obscure fever in a leukemia patient receiving parenteral nutrition. Aust N Z J Med 17:603-604

    Article  PubMed  CAS  Google Scholar 

  39. Myers JW, Smith R, Youngberg G et al (1992) Fungemia due to Malassezia furfur in patients without the usual risk factors. Clin Infect Dis 14:620-621

    Article  PubMed  CAS  Google Scholar 

  40. Wurst RM, Knospe WN (1988) Malassezia furfur fungemia in a patient without the usual risk factors. Ann Intern Med 109:432-433

    Google Scholar 

  41. Kessler AT, Kourtis AP, Simon N (2002) Peripheral thromboembolism associated with Malassezia furfur sepsis. Pediatr Infect Dis J 21:356-357

    Article  PubMed  Google Scholar 

  42. Hassall E, Ulich T, Ament M (1983) Pulmonary embolus and Malassezia pulmonary infection related to urokinase therapy. J Pediatr 102:722-725

    Article  PubMed  CAS  Google Scholar 

  43. Ashbee HR (2007) Update on the genus Malassezia. Med Mycol 45:287-303

    Article  PubMed  CAS  Google Scholar 

  44. Kim E, Cohen RS, Ramachandran P et al (1993) Adhesion of percutaneously inserted Silastic central venous lines to the vein wall associated with Malassezia furfur infection. JPEN J Parenter Enteral Nutr 17:458-460

    Article  PubMed  CAS  Google Scholar 

  45. Nguyen ST, Lund CH, Durand DJ (2001) Thrombolytic therapy for adhesion of percutaneous central venous catheters to vein intima associated with Malassezia furfur Infection. J Perinatol 21:331-333

    Article  PubMed  CAS  Google Scholar 

  46. Rosales CM, Jackson MA, Zwick D (2004) Malassezia furfur meningitis associated with total parenteral nutrition subdural effusion. Pediatr Dev Pathol 7:86-90

    Article  PubMed  Google Scholar 

  47. Nelson SC, Yau YC, Richardson SE et al (1995) Improved detection of Malassezia species in lipid-supplemented Peds Plus blood culture bottles. J Clin Microbiol 33:1005-1007

    PubMed  CAS  Google Scholar 

  48. Gaitanis G, Velegraki A, Frangoulis E et al (2002) Identification of Malassezia species from patient skin scales by PCR-RFLP. Clin Microbiol Infect 8:162-173

    Article  PubMed  CAS  Google Scholar 

  49. Tirodker U, Nataro J, Smith S et al (2003) Detection of fungemia by polymerase chain reaction in critically ill neonates and children. J Perinatol 23:117-122

    Article  PubMed  Google Scholar 

  50. Garau M, Pereiro M Jr, del Palacio A (2003) In vitro susceptibilities of Malassezia species to a new triazole, albaconazole (UR-9825), and other antifungal compounds. Antimicrob Agents Chemother 47:2342-2344

    Article  PubMed  CAS  Google Scholar 

  51. Gupta AK, Kohli Y, Li A et al (2000) In vitro susceptibility of the seven Malassezia species to ketoconazole, voriconazole, itraconazole and terbinafine. Br J Dermatol 142:758-765

    Article  PubMed  CAS  Google Scholar 

  52. Miranda KC, de Araujo CR, Costa CR et al (2007) Antifungal activities of azole agents against the Malassezia species. Int J Antimicrob Agents 29:281-284

    Article  PubMed  CAS  Google Scholar 

  53. Prado MR, Brito EH, Brilhante RS et al (2008) Subculture on potato dextrose agar as a complement to the broth microdilution assay for Malassezia pachydermatis. J Microbiol Methods 75:341-343

    Article  PubMed  CAS  Google Scholar 

  54. Richet HM, McNeil MM, Edwards MC et al (1989) Cluster of Malassezia furfur pulmonary infections in infants in a neonatal intensive-care unit. J Clin Microbiol 27:1197-1200

    PubMed  CAS  Google Scholar 

  55. Dimopoulos G, Velegraki A, Falagas ME (2009) A 10-year survey on antifungal susceptibility of candidemia isolates from intensive care unit patients in Greece. Antimicrob Agents Chemother 53:1242-1244

    Article  PubMed  CAS  Google Scholar 

  56. CLSI (2008) Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved standard M27-A3. In: Wayne PA (ed) Clinical and laboratory standards institute, 3rd edn, vol 28, No 14

    Google Scholar 

  57. EUCAST Definitive Document ED ef 7.1 (2008) Method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST). Clin Microbiol Infect 14:398-405

    Article  Google Scholar 

  58. Barbanoj MJ, Antonijoan R, Gea G et al (2005) Eberconazole cream: topical and general tolerability, sensitization potential and systemic availability. Methods Find Exp Clin Pharmacol 27:227-234

    Article  PubMed  CAS  Google Scholar 

  59. Koga H, Nanjoh Y, Makimura K et al (2008) In vitro antifungal activities of luliconazole, a new topical imidazole. Med Mycol 29:1-8

    Google Scholar 

  60. Rubin AI, Bagheri B, Scher RK (2002) Six novel antimycotics. Am J Clin Dermatol 3:71-81

    Article  PubMed  Google Scholar 

  61. Uchida K, Nishiyama Y, Yamaguchi H (2004) In vitro antifungal activity of luliconazole (NND-502), a novel imidazole antifungal agent. J Infect Chemother 10:216-219

    Article  PubMed  CAS  Google Scholar 

  62. Faergemann J (1989) A new model for growth and filament production of Pityrosporum ovale (orbiculare) on human stratum corneum in vitro. J Invest Dermatol 92:117-119

    Article  PubMed  CAS  Google Scholar 

  63. Velegraki A, Alexopoulos EC, Kritikou S et al (2004) Use of fatty acid RPMI 1640 media for testing susceptibilities of eight Malassezia species to the new triazole posaconazole and to six established antifungal agents by a modified NCCLS M27-A2 microdilution method and Etest. J Clin Microbiol 42:3589-3593

    Article  PubMed  CAS  Google Scholar 

  64. Nenoff P, Haustein UF (1997) In vitro susceptibility testing of Malassezia furfur against rilopirox. Skin Pharmacol 10:275-280

    Article  PubMed  CAS  Google Scholar 

  65. Nenoff P, Reinl P, Haustein UF (2001) The yeast fungus Malassezia: pathogen, pathogenesis and therapy. Hautarzt 52:73-86

    Article  PubMed  CAS  Google Scholar 

  66. Rukayadi Y, Hwang JK (2007) In vitro anti-Malassezia activity of xanthorrhizol isolated from Curcuma xanthorrhiza Roxb. Lett Appl Microbiol 44:126-130

    Article  PubMed  CAS  Google Scholar 

  67. Weseler A, Geiss HK, Saller R et al (2002) Antifungal effect of Australian tea tree oil on Malassezia pachydermatis isolated from canines suffering from cutaneous skin disease. Schweiz Arch Tierheilkd 144:215-221

    Article  PubMed  CAS  Google Scholar 

  68. Nakamura A, Kano A, Murai T et al (2000) Susceptibility testing of Malassezia species using the urea broth microdilution method. Antimicrob Agents Chemother 44:2185-2186

    Article  PubMed  CAS  Google Scholar 

  69. Rincón S, Cepero de García MC, Espinel-Ingrof A (2006) A modified Christensen’s urea and CLSI broth microdilution method for testing susceptibilities of six Malassezia species to voriconazole, itraconazole, and ketoconazole. J Clin Microbiol 44:3429-3431

    Article  PubMed  Google Scholar 

  70. Brito EHS, Fontenelle ROS, Brilhante RSN et al (2007) In vitro activity of an ear rinse containing tromethamine, EDTA, benzyl alcohol and 0.1% ketoconazole on Malassezia organisms from dogs with otitis externa. Vet Dermatol 18:115-119

    Article  Google Scholar 

  71. Brito EHS, Fontenelle ROS, Brilhante RSN et al (2007) Phenotypic characterization and in vitro antifungal sensitivity of Candida spp. and Malassezia pachydermatis strains from dogs. Vet J 174:147-153

    Article  PubMed  CAS  Google Scholar 

  72. Gupta AK, Plott T (2004) Ciclopirox: a broad-spectrum antifungal with antibacterial and anti-inflammatory properties. Int J Dermatol 43(Suppl 1):3-8

    Article  PubMed  CAS  Google Scholar 

  73. He SM, Du WD, Yang S et al (2008) The genetic epidemiology of tinea versicolor in China. Mycoses 51:55-62

    PubMed  Google Scholar 

  74. Plewig G, Jansen T(1999) Seborrheic dermatitis. In: Freedberg IM, Eisen AZ, Wolff K et al (eds) Fitzpatrick’s dermatology in general medicine. McGraw-Hill, New York, pp 1482-1489

    Google Scholar 

  75. Borgers M, Degreef H (2007) The role of ketoconazole in seborrheic dermatitis. Cutis 80:359-363

    PubMed  Google Scholar 

  76. Swinney A, Fazakerley J, McEwan N et al (2008) Comparative in vitro antimicrobial efficacy of commercial ear cleaners. Vet Dermatol 19:373-379

    Article  PubMed  Google Scholar 

  77. Kokjohn K, Bradley M, Griffiths B et al (2003) Evaluation of in vitro activity of ciclopirox olamine, butenafine HCl and econazole nitrate against dermatophytes, yeasts and bacteria. Int J Dermatol 42(suppl 1):11-17

    PubMed  CAS  Google Scholar 

  78. Abeck D (2004) Rationale of frequency of use of ciclopirox 1% shampoo in the treatment of seborrheic dermatitis: Results of a double-blind, placebo-controlled study comparing the efficacy of once, twice, and three times weekly usage. Int J Dermatol 43(suppl 1):13-16

    Article  PubMed  CAS  Google Scholar 

  79. Lebwohl M, Plott T (2004) Safety and efficacy of ciclopirox 1% shampoo for the treatment of seborrheic dermatitis of the scalp in the US population: Results of a double-blind, vehicle-controlled trial. Int J Dermatol 43(suppl 1):17-20

    Article  PubMed  CAS  Google Scholar 

  80. Hammer KA, Carson CF, Riley TV (2000) In vitro activities of ketoconazole, econazole, miconazole, and Melaleuca alternifolia (tea tree) oil against Malassezia species. Antimicrob Agents Chemother 44:467-469

    Article  PubMed  CAS  Google Scholar 

  81. Sidrim JJC, Rocha MFG (1007) Phenotypic characterization and in vitro antifungal sensitivity of Candida spp. and Malassezia pachydermatis strains from dogs. Vet J 174:147-153

    Google Scholar 

  82. Nenoff P, Haustein UF, Brandt W (1996) Antifungal activity of the essential oil of Melaleuca alternifolia (tea tree oil) against pathogenic fungi in vitro. Skin Pharmacol 9:388-394

    Article  PubMed  CAS  Google Scholar 

  83. López-García B, Lee PHA, Gallo RL (2006) Expression and potential function of cathelicidin antimicrobial peptides in dermatophytosis and tinea versicolor. J Antimicrob Chemother 57:877-882

    Article  PubMed  Google Scholar 

  84. Piérard-Franchimont C, Ausma J, Wouters L et al (2005) Activity of the triazole antifungal R126638 as assessed by corneofungimetry. Skin Pharmacol Physiol 19:50-56

    Article  PubMed  Google Scholar 

  85. Piérard GE, Ausma J, Henry F et al (2007) A pilot study on seborrheic dermatitis using pramiconazole as a potent oral anti-Malassezia agent. Dermatology 214:162-169

    PubMed  Google Scholar 

  86. Piérard-Franchimont C, Vroome V, Cauwenbergh G et al (2005) Corneofungimetry bioassay on Malassezia spp. under ketoconazole and desonide influences. Skin Pharmacol Physiol 18:98-102

    Article  PubMed  Google Scholar 

  87. Sugita T, Tsubuku H, Tajima M et al (2006) Time-kill assay of itraconazole against Malassezia species. Microbiol Immun 50:625-627

    CAS  Google Scholar 

  88. Pietschmann S, Hoffmann K, Voget M et al (2009) Synergistic effects of miconazole and polymyxin B on microbial pathogens. Vet Res Commun 33:489-505

    Article  PubMed  Google Scholar 

  89. Faergemann J, Ausma J, Borgers M (2006) In vitro activity of R126638 and ketoconazole against Malassezia species. Acta Derm Venereol 86:312-315

    Article  PubMed  CAS  Google Scholar 

  90. Sancak B, Ayhan M, Karaduman A et al (2005) In vitro activity of ketoconazole, itraconazole and terbinafine against Malassezia strains isolated from neonates. Mikrobiyol Bul 39: 301-308

    PubMed  CAS  Google Scholar 

  91. Murai T, Nakamura Y, Kano R et al (2002) Susceptibility testing of Malassezia pachydermatis using the urea broth microdilution method. Mycoses 28:84-87

    Article  Google Scholar 

  92. Arrese JE, Fogouang L, Piérard-Franchimont C et al (2002) Euclidean and fractal computer-assisted corneofungimetry: A comparison of 2% ketoconazole and 1% terbinafine topical formulations. Dermatol 204:222-227

    Article  CAS  Google Scholar 

  93. Brito EHS, Fontenelle ROS, Brilhante RSN, et al (2009) The anatomical distribution and antimicrobial susceptibility of yeast species isolated from healthy dogs. Vet J 182:320-326

    Article  PubMed  CAS  Google Scholar 

  94. Boekhout T, Bosboom R (1994) Karyotyping of Malassezia yeasts: taxonomic and epidemiological implications. Syst Appl Microbiol 17:146-153

    Article  Google Scholar 

  95. Theelen B, Silvestri M, Guého E et al (2001) identification and typing of Malassezia yeasts using amplified fragment length polymorphism (AFLP), random amplified polymorphic DNA (RAPD) and denaturing gradient gel electrophoresis (DGGE). FEMS Yeast Res 1:79-86

    Article  PubMed  CAS  Google Scholar 

  96. Bougnoux ME, Tavanti A, Bouchier C et al (2003) Collaborative consensus for optimized multilocus sequence typing of Candida albicans. J Clin Microbiol 41:5265-5266

    Article  PubMed  CAS  Google Scholar 

  97. Cliff PR, Sandoe JA, Heritage J et al (1008) Use of multilocus sequence typing for the investigation of colonisation by Candida albicans in intensive care unit patients. J Hosp Infect 69:24-32

    Article  Google Scholar 

  98. Jacobsen MD, Gow NA, Maiden MC et al (2007) Strain typing and determination of population structure of Candida krusei by multilocus sequence typing. J Clin Microbiol 45:317-323

    Article  PubMed  CAS  Google Scholar 

  99. Jacobsen MD, Boekhout T, Odds FC (2008) Multilocus sequence typing confirms synonymy but highlights differences between Candida albicans and Candida stellatoidea. FEMS Yeast Res 8:764-770

    Article  PubMed  CAS  Google Scholar 

  100. Maiden MC, Bygraves JA, Feil E et al (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95:3140-3145

    Article  PubMed  CAS  Google Scholar 

  101. Tavanti A, Davidson AD, Johnson EM et al (2005) Multilocus sequence typing for differentiation of strains of Candida tropicalis. J Clin Microbiol 43:5593-5600

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aristea Velegraki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tragiannidis, A., Groll, A., Velegraki, A., Boekhout, T. (2010). Malassezia Fungemia, Antifungal Susceptibility Testing and Epidemiology of Nosocomial Infections. In: Boekhout, T., Mayser, P., Guého-Kellermann, E., Velegraki, A. (eds) Malassezia and the Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03616-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03616-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03615-6

  • Online ISBN: 978-3-642-03616-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics