Skip to main content

Malassezia Species and Immunity: Host–Pathogen Interactions

  • Chapter

Core Messages

Malassezia species stimulate both the cellular and humoral immune responses in healthy humans and also in patients with Malassezia-associated diseases. The cellular immune responses to Malassezia yeasts often appear to be heightened in patients with disease. It has also become clear that Malassezia has two phenotypes - one, which is immuno-stimulatory and may occur in disease states, and the second, which is immunosuppressive and may occur during commensal carriage. Although there are fewer studies related to dogs when compared with humans, dogs also develop a spectrum of humoral and cellular immune responses to their commensal yeast, Malassezia pachydermatis, both in health and in disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ashbee HR (2007) Update on the genus Malassezia. Med Mycol 45:287-303

    PubMed  CAS  Google Scholar 

  2. Ashbee HR, Ingham E, Holland KT et al (1994) Cell-mediated immune responses to Malassezia furfur serovars A, B and C in patients with pityriasis versicolor, seborrheic dermatitis and controls. Exp Dermatol 3:106-112

    PubMed  CAS  Google Scholar 

  3. Ashbee HR, Fruin A, Holland KT et al (1994) Humoral immunity to Malassezia furfur serovars A, B and C in patients with pityriasis versicolor, seborrheic dermatitis and controls. Exp Dermatol 3:227-233

    PubMed  CAS  Google Scholar 

  4. Bergbrant IM, Johansson S, Robbins D et al (1991) The evaluation of various methods and antigens for the detection of antibodies against Pityrosporum ovale in patients with seborrhoeic dermatitis. Clin Exp Dermatol 16:339-343

    PubMed  CAS  Google Scholar 

  5. DaMert GJ, Kirkpatrick CH, Sohnle PG (1980) Comparison of antibody responses in chronic mucocutaneous candidiasis and tinea versicolor. Inter Arch All Appl Immunol 63:97-104

    CAS  Google Scholar 

  6. Faergemann J (1983) Antibodies to Pityrosporum orbiculare in patients with tinea versicolor and controls of various ages. J Invest Dermatol 80:133-135

    PubMed  CAS  Google Scholar 

  7. Furukawa F, Danno K, Imamura S et al (1981) Histological and serological studies of Pityrosporum orbiculare in cases of pityriasis versicolor. J Dermatol 8:27-30

    PubMed  CAS  Google Scholar 

  8. Neuber K, Kroger S, Gruseck E et al (1996) Effects of Pityrosporum ovale on proliferation, immunoglobulin (IgA, G, M) synthesis and cytokine (IL-2, IL-10, IFN gamma) production of peripheral blood mononuclear cells from patients with seborrhoeic dermatitis. Arch Dermatol Res 288:532-536

    PubMed  CAS  Google Scholar 

  9. Sohnle PG, Collins-Lech C (1980) Relative antigenicity of P. orbiculare and C. albicans. J Invest Dermatol 75:279-283

    PubMed  CAS  Google Scholar 

  10. Baker BS, Powles A, Garioch JJ et al (1997) Differential T-cell reactivity to the round and oval forms of Pityrosporum in the skin of patients with psoriasis. Brit J Dermatol 136:319-325

    CAS  Google Scholar 

  11. Hashimoto K, Taniguchi Y, Simon MR et al (1989) Immunological aspects of superficial fungal infections. Jpn J Med Mycol 30:81-91

    Google Scholar 

  12. Midgley G, Hay RJ (1988) Serological responses to Pityrosporum (Malassezia) in seborrhoiec dermatitis demonstrated by ELISA and Western blotting. Bull Soc Fr Mycol Méd 17: 267-276

    Google Scholar 

  13. Parry ME, Sharpe GR (1998) Seborrhoeic dermatitis is not caused by an altered immune response to Malassezia yeast. Brit J Dermatol 139:254-263

    CAS  Google Scholar 

  14. Arzumanyan VG, Serdyuk OA, Kozlova NN et al (2003) IgE and IgG antibodies to Malassezia spp. yeast extract in patients with atopic dermatitis. Bull Exp Biol Med 135:460-463

    PubMed  CAS  Google Scholar 

  15. Zargari A, Doekes G, van Ieperen-van Dijk AG et al (1995) Influence of culture period on the allergenic composition of Pityrosporum orbiculare extracts. Clin Exp All 25:1235-1245

    CAS  Google Scholar 

  16. Lintu P, Savolainen J, Kalimo K et al (1998) Stability of Pityrosporum ovale allergens during storage. Clin Exp All 28:486-490

    CAS  Google Scholar 

  17. Jensen-Jarolim E, Poulsen LK, With H et al (1992) Atopic dermatitis of the face, scalp, and neck: type I reaction to the yeast Pityrosporum ovale? J All Clin Immunol 89:44-51

    CAS  Google Scholar 

  18. Guého E, Midgley G, Guillot J (1996) The genus Malassezia with description of four new species. Antonie van Leeuwenhoek 69:337-355

    PubMed  Google Scholar 

  19. Schmidt M, Zargari A, Holt P et al (1997) The complete cDNA sequence and expression of the first major allergenic protein of Malassezia furfur, Mal f 1. Eur J Biochem 246:181-185

    PubMed  CAS  Google Scholar 

  20. Bos JD (1997) The skin as an organ of immunity. Clin Exp Immunol 107:3-5

    PubMed  Google Scholar 

  21. Meyer T, Stockfleth E, Christophers E (2007) Immune response profiles in human skin. Br J Dermatol 157(suppl 2):1-7

    PubMed  CAS  Google Scholar 

  22. Elias PM (2005) Stratum corneum defensive functions: an integrated view. J Invest Dermatol 125:183-200

    PubMed  CAS  Google Scholar 

  23. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710-720

    PubMed  CAS  Google Scholar 

  24. Niyonsaba F, Ogawa H (2005) Protective roles of the skin against infection: implication of naturally occurring human antimicrobial agents beta-defensins, cathelicidin LL-37 and lysozyme. J Dermatol Sci 40:157-168

    PubMed  CAS  Google Scholar 

  25. Markiewski MM, Lambris JD (2007) The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol 171:715-727

    PubMed  CAS  Google Scholar 

  26. Ray TL, Wuepper KD (1976) Activation of the alternative (properdin) pathway of complement by Candida albicans and related species. J Invest Dermatol 67:700-703

    PubMed  CAS  Google Scholar 

  27. Webster GF, McArthur WP (1982) Activation of components of the alternative pathway of complement by Propionibacterium acnes cell wall carbohydrate. J Invest Dermatol 79:137-140

    PubMed  CAS  Google Scholar 

  28. Belew PW, Rosenberg EW, Jennings BR (1980) Activation of the alternative pathway of complement by Malassezia ovalis (Pityrosporum ovale). Mycopath 70:187-191

    CAS  Google Scholar 

  29. Shoham S, Levitz SM (2005) The immune response to fungal infections. Br J Haematol 129:569-582

    PubMed  Google Scholar 

  30. Wagner DK, Sohnle PG (1997) Cutaneous defense mechanisms against fungi. Basic Clin Dermatol 12:161-189

    Google Scholar 

  31. Janssens S, Beyaert R (2003) Role of Toll-like receptors in pathogen recognition. Clin Microbiol Rev 16:637-646

    PubMed  CAS  Google Scholar 

  32. Ben-Ami R, Lewis RE, Kontoyiannis DP (2008) Immunocompromised hosts: immunopharmacology of modern antifungals. Clin Infect Dis 47:226-235

    PubMed  CAS  Google Scholar 

  33. Romani L (2004) Immunity to fungal infections. Nat Rev Immunol 4:1-13

    PubMed  Google Scholar 

  34. Ashbee HR, Muir SR, Cunliffe WJ et al (1997) IgG subclasses specific to Staphylococcus epidermidis and Propionibacterium acnes in patients with acne vulgaris. Brit J Dermatol 136:730-733

    CAS  Google Scholar 

  35. Ingham E, Gowland G, Ward RM et al (1987) Antibodies to Propionibacterium acnes and P. acnes exocellular enzymes in the normal population at various ages and in patients with acne vulgaris. Br J Dermatol 116:805-812

    PubMed  CAS  Google Scholar 

  36. Metze D, Kersten A, Jurecka W et al (1991) Immunoglobulins coat microorganisms of skin surface: a comparative immunohistochemical and ultrastructural study of cutaneous and oral microbial symbionts. J Invest Dermatol 96:439-445

    PubMed  CAS  Google Scholar 

  37. Casadevall A, Feldmesser M, Pirofski LA (2002) Induced humoral immunity and vaccination against major human fungal pathogens. Curr Opin Microbiol 5:386-391

    PubMed  CAS  Google Scholar 

  38. Martin-Scott J (1952) The Pityrosporum ovale. Brit J Dermatol 64:257-273

    CAS  Google Scholar 

  39. Sohnle PG, Collins-Lech C (1983) Activation of complement by Pityrosporum orbiculare. J Invest Dermatol 80:93-97

    PubMed  CAS  Google Scholar 

  40. Suzuki T, Ohno N, Oshima Y et al (1998) Activation of the complement system, alternative and classical pathways, by Malassezia furfur. Pharm Pharmacol Lett 8:133-136

    CAS  Google Scholar 

  41. Scott DG, Cunliffe WJ, Gowland G (1979) Activation of complement-a mechanism for the inflammation in acne. Br J Dermatol 101:315-320

    PubMed  CAS  Google Scholar 

  42. Faergemann J, Bergbrant IM, Dohse M et al (2001) Seborrhoeic dermatitis and Pityrosporum (Malassezia) folliculitis: characterization of inflammatory cells and mediators in the skin by immunohistochemistry. Brit J Dermatol 144:549-556

    CAS  Google Scholar 

  43. Piérard-Franchimont C, Arrese JE, Piérard GE (1995) Immunohistochemical aspects of the link between Malassezia ovalis and seborrhoeic dermatitis. J Eur Acad Dermatol Venereol 4:14-19

    Google Scholar 

  44. Lopez-Garcia B, Lee PH, Gallo RL (2006) Expression and potential function of cathelicidin antimicrobial peptides in dermatophytosis and tinea versicolor. J Antimicrob Chemother 57:877-882

    PubMed  CAS  Google Scholar 

  45. Donnarumma G, Paoletti I, Buommino E et al (2004) Malassezia furfur induces the expression of beta-defensin-2 in human keratinocytes in a protein kinase C-dependent manner. Arch Dermatol Res 295:474-481

    PubMed  CAS  Google Scholar 

  46. White A, Handler P, Smith et al (1992) Blood. In: Principles of biochemistry. McGraw Hill, Tokyo, pp 902-928

    Google Scholar 

  47. Saylers AA, Whitt DD (1994) Bacterial pathogenesis. A molecular approach. ASM Press, Washington, pp 16-17

    Google Scholar 

  48. Ardehali R, Shi L, Janatova J et al (2003) The inhibitory activity of serum to prevent bacterial adhesion is mainly due to apo-transferrin. J Biomed Mater Res A 66:21-28

    PubMed  Google Scholar 

  49. Artis WM, Patrusky E, Rastinejad F et al (1983) Fungistatic mechanism of human transferrin for Rhizopus oryzae and Trichophyton mentagrophytes: alternative to simple iron deprivation. Infect Immun 41:1269-1278

    PubMed  CAS  Google Scholar 

  50. King RD, Khan HA, Foye JC et al (1975) Transferrin, iron, and dermatophytes. I. Serum dematophyte inhibitory component definitively identified as unsaturated transferrin. J Lab Clin Med 86:204-212

    PubMed  CAS  Google Scholar 

  51. Shiraishi A, Arai T (1979) Antifungal activity of transferrin. Sabouraudia 17:79-83

    PubMed  CAS  Google Scholar 

  52. Minn Y, Brummer E, Stevens DA (1997) Effect of iron on fluconazole activity against Candida albicans in presence of human serum or monocyte-derived macrophages. Mycopath 138:29-35

    CAS  Google Scholar 

  53. Grover DD, Brummer E, Stevens DA (1996) Study of the role of iron in the anticryptococcal activity of human serum and fluconazole. Mycopathol 133:71-77

    CAS  Google Scholar 

  54. Sridhar S, Ahluwalia M, Brummer E et al (2000) Characterization of an anticryptococcal protein isolated from human serum. Infect Immun 68:3787-3791

    Google Scholar 

  55. Sutcliffe MC, Savage AM, Alford RH (1980) Transferrin-dependent growth inhibition of yeast-phase Histoplasma capsulatum by human serum and lymph. J Infect Dis 142:209-219

    PubMed  CAS  Google Scholar 

  56. Abate O, Zanatta R, Malisano T et al (2000) Canine serum protein patterns using high-resolution electrophoresis (HRE). Vet J 159:154-160

    PubMed  CAS  Google Scholar 

  57. Graber HU, Pfister H, Martig J (1995) Increased concentrations of transferrin in the urine and serum of cattle with cardiomyopathy. Res Vet Sci 59:160-163

    PubMed  CAS  Google Scholar 

  58. Jenkinson DM, Lloyd DH, Mabon RM (1979) The antigenic composition and source of soluble proteins on the surface of the skin of sheep. J Comp Pathol 89:43-50

    PubMed  CAS  Google Scholar 

  59. Nakayashiki N (1990) Sweat protein components tested by SDS-polyacrylamide gel electrophoresis followed by immunoblotting. Tohoku J Exp Med 161:25-31

    PubMed  CAS  Google Scholar 

  60. Lloyd DH, Dick WD, Jenkinson DM (1979) Location of the microflora in the skin of cattle. Br Vet J 135:519-526

    PubMed  CAS  Google Scholar 

  61. Malcolm SA, Hughes TC (1980) The demonstration of bacteria on and within the stratum corneum using scanning electron microscopy. Br J Dermatol 102:267-275

    PubMed  CAS  Google Scholar 

  62. Montes LF, Wilborn WH (1969) Location of bacterial skin flora. Br J Dermatol 81(Suppl 1):23-26

    PubMed  Google Scholar 

  63. Williamson P, Kligman AM (1965) A new method for the quantitative investigation of cutaneous bacteria. J Invest Dermatol 45:498-503

    PubMed  CAS  Google Scholar 

  64. King RD (1976) Nutritional immunity in cutaneous fungous infections. Int J Dermatol 15:358-359

    PubMed  CAS  Google Scholar 

  65. Bond R, Kim Y, Lloyd DH (2005) Bovine and canine transferrin inhibit the growth of Malassezia pachydermatis in vitro. Med Mycol 43:447-451

    PubMed  CAS  Google Scholar 

  66. Mauldin EA, Scott DW, Miller WH et al (1997) Malassezia dermatitis in the dog: a retrospective histopathological and immunopathological study of 86 cases (1990-95). Vet Dermatol 8:191-202

    Google Scholar 

  67. Richardson MD, Shankland GS (1991) Enhanced phagocytosis and intracellular killing of Pityrosporum ovale by human neutrophils after exposure to ketoconazole is correlated to changes of the yeast cell surface. Mycoses 34:29-33

    PubMed  CAS  Google Scholar 

  68. Cech P, Lehrer RI (1984) Heterogeneity of human neutrophil phagolysosomes: functional consequences for candidacidal activity. Blood 64:147-151

    PubMed  CAS  Google Scholar 

  69. Murphy JW (1991) Mechanisms of natural resistance to pathogenic fungi. Ann Rev Microbiol 45:509-538

    CAS  Google Scholar 

  70. Nazzaro-Porro M, Passi S (1978) Identification of tyrosinase inhibitors in cultures of Pityrosporum. J Invest Dermatol 71:205-208

    PubMed  CAS  Google Scholar 

  71. Akamatsu H, Komura J, Asada Y et al (1991) Inhibitory effect of azelaic acid on neutrophil functions: a possible cause for its efficacy in treating pathogenetically unrelated diseases. Arch Dermatol Res 283:162-166

    PubMed  CAS  Google Scholar 

  72. Fitton A, Goa KL (1991) Azelaic acid: a review of its pharmacological properties and therapeutic efficacy in acne and hyperpigmentary skin disorders. Drugs 41:780-798

    PubMed  CAS  Google Scholar 

  73. Mittag H (1995) Fine structural investigation of Malassezia furfur. II. The envelope of the yeast cells. Mycoses 38:13-21

    PubMed  CAS  Google Scholar 

  74. Ashbee HR, Evans EGV (2002) Immunology of diseases associated with Malassezia species. Clin Micro Rev 15:21-57

    PubMed  CAS  Google Scholar 

  75. Krämer HJ, Kessler D, Hipler UC et al (2005) Pityriarubins, novel highly selective inhibitors of respiratory burst from cultures of the yeast Malassezia furfur: comparison with the bisindolylmaleimide arcyriarubin A. Chembiochem 6:2290-2297

    PubMed  Google Scholar 

  76. Suzuki T, Ohno N, Ohshima Y et al (1998) Soluble mannan and beta-glucan inhibit the uptake of Malassezia furfur by human monocytic cell line, THP-1. FEMS Immunol Med Microbiol 21:223-230

    PubMed  CAS  Google Scholar 

  77. Suzuki T, Tsuzuki A, Ohno N et al (2000) Enhancement of IL-8 production from human monocytic and granulocytic cell lines, THP-1 and HL-60, stimulated with Malassezia furfur. FEMS Immunol Med Microbiol 28:157-162

    PubMed  CAS  Google Scholar 

  78. Bunse T, Mahrle G (1996) Soluble Pityrosporum-derived chemoattractant for polymorphonuclear leukocytes of psoriatic patients. Acta Derm Venereol 76:10-12

    PubMed  CAS  Google Scholar 

  79. Takahashi M, Ushijima T, Ozaki Y (1984) Biological activity of Pityrosporum. I. Enhancement of resistance in mice stimulated by Pityrosporum against Salmonella typhimurium. Immunology 51:697-702

    PubMed  CAS  Google Scholar 

  80. Takahashi M, Ushijima T, Ozaki Y (1986) Biological activity of Pityrosporum. II. Antitumor and immune stimulating effect of Pityrosporum in mice. J Nat Cancer Inst 77:1093-1097

    PubMed  CAS  Google Scholar 

  81. Walters CE, Ashbee HR, Eady EA et al (1995) Malassezia furfur suppresses in vitro interleukin-6 release by peripheral blood mononuclear cells. J Invest Dermatol 105:492

    Google Scholar 

  82. Kesavan S, Walters CE, Holland KT et al (1998) The effects of Malassezia on pro-inflammatory cytokine production by human peripheral blood mononuclear cells in vitro. Med Mycol 36:97-106

    PubMed  CAS  Google Scholar 

  83. Kesavan S, Holland KT, Ingham E (2000) The effects of lipid extraction on the immunomodulatory activity of Malassezia species in vitro. Med Mycol 38:239-247

    PubMed  CAS  Google Scholar 

  84. Scheynius A, Faergemann J, Forsum U et al (1984) Phenotypic characterization in situ of inflammatory cells in pityriasis (tinea) versicolor. Acta Derm Venereol 64:473-479

    PubMed  CAS  Google Scholar 

  85. Brasch J, Martens H, Sterry W (1993) Langerhans cell accumulation in chronic tinea pedis and pityriasis versicolor. Clin Exp Dermatol 18:329-332

    PubMed  CAS  Google Scholar 

  86. Wroblewski N, Bar S, Mayser P (2005) Missing granulocytic infiltrate in pityriasis versicolor - Indication of specific anti-inflammatory activity of the pathogen? Mycoses Suppl 48: 66-71

    Google Scholar 

  87. Thomas DS, Ingham E, Bojar RA et al (2008) in vitro modulation of human kerationcyte pro- and anti-inflammatory cytokine production by the capsule of Malassezia spp. FEMS Immunol Med Microbiol 54:203-214

    PubMed  CAS  Google Scholar 

  88. Pinkus H, Mehregan AH (1966) The primary histologic lesion of seborrhoeic dermatitis and psoriasis. J Invest Dermatol 46:109-116

    PubMed  CAS  Google Scholar 

  89. Bergbrant IM, Johansson S, Robbins D et al (1991) An immunological study in patients with seborrhoeic dermatitis. Clin Exp Dermatol 16:331-338

    PubMed  CAS  Google Scholar 

  90. Borton LK, Schwartz RA (1981) Pityrosporum folliculitis: a common acneiform condition of middle age. Ariz Med 38:598-601

    PubMed  CAS  Google Scholar 

  91. Bufill JA, Lum LG, Caya JG et al (1988) Pityrosporum folliculitis after bone marrow transplantation. Clinical observations in five patients. Ann Int Med 108:560-563

    PubMed  CAS  Google Scholar 

  92. Ford GP, Ive FA, Midgley G (1982) Pityrosporum folliculitis and ketoconazole. Brit J Dermatol 107:691-695

    CAS  Google Scholar 

  93. Weary PE, Russell CM, Butler HK et al (1969) Acneiform eruptions resulting from antibiotic administration. Arch Dermatol 100:179-183

    PubMed  CAS  Google Scholar 

  94. Ferrandiz C, Ribera M, Barranco JC et al (1992) Eosinophilic pustular folliculitis in patients with acquired immunodeficiency syndrome. Inter J Dermatol 31:193-195

    CAS  Google Scholar 

  95. Potter BS, Burgoon CF, Johnson WC (1973) Pityrosporum folliculitis. Report of seven cases and review of the Pityrosporum organism relative to cutaneous disease. Arch Dermatol 107:388-391

    PubMed  CAS  Google Scholar 

  96. Gross TL, Ihrke PJ, Walder EJ et al (2005) Malassezia dermatitis. In: Skin diseases of the dog and cat. Blackwell Science, Oxford

    Google Scholar 

  97. Guaguère E, Prélaud A (1996) A retrospective study of 54 dogs with Malassezia pachydermatis dermatitis: epidemiological, clinical, cytological and histopathological results. Pract Méd Chir An Comp 31:309-323

    Google Scholar 

  98. Mason KV, Evans AG (1991) Dermatitis associated with Malassezia pachydermatis in 11 dogs. J Am Anim Hosp Assoc 27:13-20

    Google Scholar 

  99. Mauldin EA, Morris DO, Goldschmidt MH (2002) Retrospective study: the presence of Malassezia in feline skin biopsies. A clinicopathological study. Vet Dermatol 13:7-13

    PubMed  Google Scholar 

  100. Charles CR, Sire DJ, Johnson BL et al (1972) Hypopigmentation in tinea versicolor: a histochemical and electronmicroscopic study. Inter J Dermatol 12:48-58

    Google Scholar 

  101. El-Gothamy Z, Abdel-Fattah A, Ghaly AF (1975) Tinea versicolor hypopigmentation: histochemical and therapeutic studies. Inter J Dermatol 14:510-515

    CAS  Google Scholar 

  102. Karaoui R, Bou-Resli M, Al Zaid NS et al (1981) Tinea versicolor: ultrastructural studies on hypopigmented and hyperpigmented skin. Dermatologica 162:69-85

    PubMed  CAS  Google Scholar 

  103. Allen HB, Charles CR, Johnson BL (1976) Hyperpigmented tinea versicolor. Arch Dermatol 112:1110-1112

    PubMed  CAS  Google Scholar 

  104. Galadari I, El Komy M, Mousa A et al (1992) Tinea versicolor: histologic and ultrastructural investigation of pigmentary changes. Inter J Dermatol 31:253-256

    CAS  Google Scholar 

  105. Dotz WI, Henrikson DM, Yu GSM (1985) Tinea versicolor: a light and electron microscopic study of hyperpigmented skin. J Am Acad Dermatol 12:37-44

    PubMed  CAS  Google Scholar 

  106. De Luca C, Picardo M, Breathnach A et al (1996) Lipoperoxidase activity of Pityrosporum: characterisation of by-products and possible role in pityriasis versicolor. Exp Dermatol 5:49-56

    PubMed  Google Scholar 

  107. Nazzaro-Porro M, Passi S, Picardo M et al (1986) Lipoxygenase activity of Pityrosporum in vitro and in vivo. J Invest Dermatol 87:108-112

    PubMed  CAS  Google Scholar 

  108. Krämer HJ, Podobinska M, Bartsch A et al (2005) Malassezin, a novel agonist of the aryl hydrocarbon receptor from the yeast Malassezia furfur, induces apoptosis in primary human melanocytes. Chembiochem 6:860-865

    PubMed  Google Scholar 

  109. Aly R, Bibel DJ (1992) Adherence of skin microorganisms and the development of skin flora from birth. In: Noble WC (ed) The skin microflora and microbial skin disease. Cambridge University Press, Cambridge, pp 355-372

    Google Scholar 

  110. Kennedy MJ (1988) Adhesion and association mechanisms of Candida albicans. Curr Top Med Mycol 4:73-169

    Google Scholar 

  111. Tsuboi R, Ogawa H, Bramono K (1994) Pathogenesis of superficial mycoses. J Med Vet Mycol 32:91-104

    PubMed  Google Scholar 

  112. Zurita J, Hay RJ (1987) Adherence of dermatophyte microconidia and arthroconidia to human keratinocytes in vitro. J Invest Dermatol 89:529-534

    PubMed  CAS  Google Scholar 

  113. Calderone RA, Diamond R, Senet J-M et al (1994) Host cell-fungal cell interactions. J Med Vet Mycol 32:151-168

    PubMed  Google Scholar 

  114. Dranginis AM, Rauceo JM, Coronado JE et al (2007) A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev 71:282-294

    Google Scholar 

  115. Borgers M, Cauwenbergh G, van de Ven MA et al (1987) Pityriasis versicolor and Pityrosporum ovale. Morphogenetic and ultrastructural considerations. Inter J Dermatol 26:586-589

    CAS  Google Scholar 

  116. Faergemann J, Aly R, Maibach HI (1983) Adherence of Pityrosporum orbiculare to human stratum corneum cells. Arch Dermatol Res 275:246-250

    PubMed  CAS  Google Scholar 

  117. Bergbrant IM, Faergemann J (1994) Adherence of Malassezia furfur to human stratum corneum cells in vitro: a study of healthy individuals and patients with seborrhoeic dermatitis. Mycoses 37:217-219

    PubMed  CAS  Google Scholar 

  118. Schechtman RC, Midgley G, Bingham JS et al (1995) Adherence of Malassezia isolates to human keratinocytes in vitro - a study of HIV-positive patients with seborrhoeic dermatitis. Brit J Dermatol 133:537-541

    CAS  Google Scholar 

  119. Bond R, Lloyd DH (1996) Factors affecting the adherence of Malassezia pachydermatis to canine corneocytes in vitro. Vet Dermatol 7:49-56

    Google Scholar 

  120. Bond R, Lloyd DH (1998) Studies on the role of carbohydrates in the adherence of Malassezia pachydermatis to canine corneocytes in vitro. Vet Dermatol 9:105-109

    Google Scholar 

  121. Bond R, Lloyd DH (1998) The relationship between population sizes of Malassezia pachydermatis in healthy dogs and in basset hounds with M. pachydermatis-associated seborrhoeic dermatitis and adherence to canine corneocytes in vitro. In: Kwochka KW, Willemse T, von Tscharner C (eds) Advances in veterinary dermatology, vol 3. Butterworth, Heineman, pp 283-289

    Google Scholar 

  122. Ray TL, Digre KB, Payne CD (1984) Adherence of Candida species to human epidermal corneocytes and buccal mucosal cells: correlation with cutaneous pathogenicity. J Invest Dermatol 83:37-41

    PubMed  CAS  Google Scholar 

  123. Bailey A, Wadsworth E, Calderone R (1995) Adherence of Candida albicans to human buccal epithelial cells: host-induced protein synthesis and signalling events. Infect Immun 63:569-572

    PubMed  CAS  Google Scholar 

  124. Merkel GJ, Scofield BA (1993) Conditions affecting the adherence of Cryptococcus neoformans to rat glial and lung cells in vitro. J Med Vet Mycol 31:55-64

    PubMed  CAS  Google Scholar 

  125. Kimura LH, Pearsall NN (1978) Adherence of Candida albicans to human buccal epithelial cells. Infect Immun 21:64-68

    PubMed  CAS  Google Scholar 

  126. King RD, Lee JC, Morris AL (1980) Adherence of Candida albicans and other Candida species to mucosal epithelial cells. Infect Immun 27:667-674

    PubMed  CAS  Google Scholar 

  127. Collins-Lech C, Kalbfleisch JH, Franson TR et al (1984) Inhibition by sugars of Candida albicans adherence to human buccal mucosal cells and corneocytes in vitro. Infect Immun 46:831-834

    PubMed  CAS  Google Scholar 

  128. Segal E, Lehrer N, Ofek I (1982) Adherence of Candida albicans to human vaginal epithelial cells: inhibition by amino sugars. Exp Cell Biol 50:13-17

    PubMed  CAS  Google Scholar 

  129. Sandin RL, Rogers AL, Patterson RJ et al (1982) Evidence for mannose-mediated adherence of Candida albicans to human buccal cells in vitro. Infect Immun 35:79-85

    PubMed  CAS  Google Scholar 

  130. Aly R, Shinefield HI, Strauss WG et al (1977) Bacterial adherence to nasal mucosal cells. Infect Immun 17:546-549

    PubMed  CAS  Google Scholar 

  131. Bibel DJ, Aly R, Shinefield HR et al (1982) Importance of the keratinized epithelial cell in bacterial adherence. J Invest Dermatol 79:250-253

    PubMed  CAS  Google Scholar 

  132. Kurono Y, Fujiyoshi T, Mogi G (1989) Secretory IgA and bacterial adherence to nasal mucosal cells. Ann Otol Rhinol Laryngol 98:273-277

    PubMed  CAS  Google Scholar 

  133. Bond R, Lloyd DH (1997) Skin and mucosal populations of Malassezia pachydermatis in healthy and seborrhoeic Basset Hounds. Vet Dermatol 8:101-106

    Google Scholar 

  134. Power HT, Ihrke PJ, Stannard AA et al (1992) Use of etretinate for treatment of primary keratinization disorders (idiopathic seborrhea) in cocker spaniels, west highland white terriers, and basset hounds. J Am Vet Med Assoc 201:419-429

    PubMed  CAS  Google Scholar 

  135. Tokura Y, Kobayashi M, Kabashima K (2008) Epidermal chemokines and modulation by antihistamines, antibiotics and antifungals. Exp Dermatol 17:81-90

    PubMed  CAS  Google Scholar 

  136. Watanabe S, Kano R, Sato H et al (2001) The effects of Malassezia yeasts on cytokine production by human keratinocytes. J Invest Dermatol 116:769-773

    PubMed  CAS  Google Scholar 

  137. Baroni A, Perfetto B, Paoletti I et al (2001) Malassezia furfur invasiveness in a keratinocyte cell line (HaCat): effects on cytoskeleton and on adhesion molecule and cytokine expression. Arch Dermatol Res 293:414-419

    PubMed  CAS  Google Scholar 

  138. Ishibashi Y, Sugita T, Nishikawa A (2006) Cytokine secretion profile of human keratinocytes exposed to Malassezia yeasts. FEMS Immunol Med Microbiol 48:400-409

    PubMed  CAS  Google Scholar 

  139. Sugita T, Suto H, Unno T et al (2001) Molecular analysis of Malassezia microflora on the skin of atopic dermatitis patients and healthy subjects. J Clin Microbiol 39:3486-3490

    PubMed  CAS  Google Scholar 

  140. Baroni A, Orlando M, Donnarumma G et al (2006) Toll-like receptor 2 (TLR2) mediates intracellular signalling in human keratinocytes in response to Malassezia furfur. Arch Dermatol Res 297:280-288

    PubMed  CAS  Google Scholar 

  141. Baroni A, Paoletti I, Ruocco E et al (2004) Possible role of Malassezia furfur in psoriasis: modulation of TGF b 1, integrin and HSP 70 expression in human keratinocytes and in the skin of psoriasis-affected patients. J Cutaneous Pathol 31:35-42

    Google Scholar 

  142. Chen TA, Halliwell RE, Hill PB (2002) Failure of extracts from Malassezia pachydermatis to stimulate canine keratinocyte proliferation in vitro. Vet Dermatol 13:323-329

    PubMed  Google Scholar 

  143. von Tscharner C, Wyder MT, Busato A (1999) Proliferation characteristics of canine keratinocyte cultures infected with Malassezia pachydermatis. American Academy of Veterinary Dermatologists, Annual Meeting, Abstract 186

    Google Scholar 

  144. Chen TA, Halliwell REW, Shaw DJ et al (2004) Assessment of the ability of Malassezia pachydermatis to stimulate proliferation of canine keratinocytes in vitro. Am J Vet Res 65:787-796

    PubMed  Google Scholar 

  145. Baroni A, Perfetto B, Paoletti I et al (2001) Uptake of Malassezia furfur by human dermal fibroblasts: effect of ketoconazole and cytoskeleton inhibitors. Arch Dermatol Res 293:407-413

    PubMed  CAS  Google Scholar 

  146. Ashbee HR, Gunning J, Holland KT et al (1995) Titres of IgE specific to Malassezia furfur serovars A, B and C in patients with pityriasis versicolor and controls. J Invest Dermatol 105:492

    Google Scholar 

  147. Bergbrant IM, Faergemann J (1989) Seborrhoeic dermatitis and Pityrosporum ovale: a cultural and immunological study. Acta Derm Venereol 69:332-335

    PubMed  CAS  Google Scholar 

  148. Faergemann J, Johansson S, Back O et al (1986) An immunologic and cultural study of Pityrosporum folliculitis. J Am Acad Dermatol 14:429-433

    PubMed  CAS  Google Scholar 

  149. Kieffer M, Bergbrant IM, Faergemann J et al (1990) Immune reactions to Pityrosporum ovale in adult patients with atopic and seborrheic dermatitis. J Am Acad Dermatol 22:739-742

    PubMed  CAS  Google Scholar 

  150. Silva V, Fischman O, de Camargo ZP (1997) Humoral immune response to Malassezia furfur in patients with pityriasis versicolor and seborrheic dermatitis. Mycopath 139:79-85

    CAS  Google Scholar 

  151. Squiquera L, Galimberti R, Morelli L et al (1994) Antibodies to proteins from Pityrosporum ovale in the sera from patients with psoriasis. Clin Exp Dermatol 19:289-293

    PubMed  CAS  Google Scholar 

  152. Sternberg TH, Keddie FM (1961) Immunofluorescence studies in tinea versicolor. Arch Dermatol 84:161-165

    Google Scholar 

  153. Wu YC, Chen KT (1985) Humoral immunity in patients with tinea versicolor. J Dermatol 12:161-166

    PubMed  CAS  Google Scholar 

  154. Alexander S (1968) Loss of hair and dandruff. Brit J Dermatol 79:549-552

    Google Scholar 

  155. Sohnle PG, Collins-Lech C, Huhta KE (1983) Class-specific antibodies in young and aged humans against organisms producing superficial fungal infections. Brit J Dermatol 108:69-76

    CAS  Google Scholar 

  156. Bergbrant IM, Faergemann J (1988) Variations of Pityrosporum orbiculare in middle-aged and elderly individuals. Acta Derm Venereol 68:537-540

    PubMed  CAS  Google Scholar 

  157. Cunningham AC, Ingham E, Gowland G (1992) Humoral responses to Malassezia furfur serovars A, B and C in normal individuals of various ages. Brit J Dermatol 127:476-481

    CAS  Google Scholar 

  158. Faggi E, Pini G, Campisi E et al (1998) Anti-Malassezia furfur antibodies in the population. Mycoses 41:273-275

    PubMed  CAS  Google Scholar 

  159. Saadatzadeh MR (1998) The immunology of the mycelial phase of Malassezia. PhD Thesis, University of Leeds

    Google Scholar 

  160. Bond R, Elwood CM, Littler RM et al (1998) Humoral and cell-mediated responses to Malassezia pachydermatis in healthy dogs and dogs with Malassezia dermatitis. Vet Record 143:381-384

    CAS  Google Scholar 

  161. Bond R, Saijonmaa-Koulumies LE, Lloyd DH (1995) Population sizes and frequency of Malassezia pachydermatis at skin and mucosal sites on healthy dogs. J Small Anim Pract 36:147-150

    PubMed  CAS  Google Scholar 

  162. Nuttall TJ, Halliwell RE (2001) Serum antibodies to Malassezia yeasts in canine atopic dermatitis. Vet Dermatol 12:327-332

    PubMed  CAS  Google Scholar 

  163. Bond R, Lloyd DH (2002) Immunoglobulin G responses to Malassezia pachydermatis in healthy dogs and dogs with Malassezia dermatitis. Vet Record 150:509-512

    CAS  Google Scholar 

  164. Chen TA, Halliwell REW (2002) Immunoglobulin G responses to Malassezia pachydermatis antigens in atopic and normal dogs. Adv Vet Dermatol 4:202-209

    Google Scholar 

  165. Habibah A, Catchpole B, Bond R (2005) Canine serum immunoreactivity to M. pachydermatis in vitro is influenced by the phase of yeast growth. Vet Dermatol 16:147-152

    PubMed  CAS  Google Scholar 

  166. Chen TA, Halliwell RE, Pemberton AD et al (2002) Identification of major allergens of Malassezia pachydermatis in dogs with atopic dermatitis and Malassezia overgrowth. Vet Dermatol 13:141-150

    PubMed  Google Scholar 

  167. Farver K, Morris DO, Shofer F et al (2005) Humoral measurement of type-1 hypersensitivity reactions to a commercial Malassezia allergen. Vet Dermatol 16:261-268

    PubMed  CAS  Google Scholar 

  168. Koranda FC, Dehmel EA, Kahn G et al (1974) Cutaneous complications in immunosuppressed renal homograft recipients. J Am Med Assoc 229:419-424

    CAS  Google Scholar 

  169. Segal R, Shmueli D, Yussim A et al (1989) Renal transplant incidence of superficial fungal infection as related to immunosuppression therapy. Transplant Proc 21:2114-2116

    PubMed  CAS  Google Scholar 

  170. Rhie S, Turcios R, Buckley H et al (2000) Clinical features and treatment of Malassezia folliculitis with fluconazole in orthotopic heart transplant recipients. J Heart Lung Transplant 19:215-219

    PubMed  CAS  Google Scholar 

  171. Coldiron BM, Bergstresser PR (1989) Prevalence and clinical spectrum of skin disease inpatients infected with HIV. Arch Dermatol 125:357-361

    PubMed  CAS  Google Scholar 

  172. Smith KJ, Skelton HG, Yeager J et al (1994) Cutaneous findings in HIV-1 positive patients: a 42 month prospective study. J Am Acad Dermatol 31:746-754

    PubMed  CAS  Google Scholar 

  173. Vidal C, Girard PM, Dompmartin D et al (1990) Seborrhoeic dermatitis and HIV infection. J Am Acad Dermatol 23:1106-1110

    PubMed  CAS  Google Scholar 

  174. Federlin K, Maini RN, Russell AS et al (1971) A micro-method for peripheral leucocyte migration in tuberculin sensitivity. J Clin Pathol 24:533-536

    PubMed  CAS  Google Scholar 

  175. Cunningham AC (1991) An investigation of the immune status of man to Malassezia spp. PhD Thesis, University of Leeds

    Google Scholar 

  176. Sohnle PG, Collins-Lech C (1978) Cell-mediated immunity to Pityrosporum orbiculare in tinea versicolor. J Clin Invest 62:45-53

    PubMed  CAS  Google Scholar 

  177. Sohnle PG, Collins-Lech C (1982) Analysis of the lymphocyte transformation response to Pityrosporum orbiculare in patients with tinea versicolor. Clin Exp Immunol 49:559-564

    PubMed  CAS  Google Scholar 

  178. Wu C, Chen KT (1987) Lymphocyte proliferation to crude extract of Pityrosporum species and natural killer activity in tinea versicolor. J Med Assoc Thailand 70:45

    Google Scholar 

  179. Bergbrant IM, Andersson B, Faergemann J (1999) Cell-mediated immunity to Malassezia furfur in patients with seborrhoeic dermatitis and pityriasis versicolor. Clin Exp Dermatol 24:402-406

    PubMed  CAS  Google Scholar 

  180. Saadatzadeh MR, Ashbee HR, Cunliffe WJ et al (2001) Cell-mediated immunity to the mycelial phase of Malassezia spp. in patients with pityriasis versicolor and controls. Brit J Dermatol 144:77-84

    CAS  Google Scholar 

  181. Farr PM, Krause LB, Marks JM et al (1985) Response of scalp psoriasis to oral ketoconazole. Lancet 2:921-922

    PubMed  CAS  Google Scholar 

  182. Rosenberg EW, Belew PW (1982) Improvement of psoriasis of the scalp with ketoconazole. Arch Dermatol 118:370-371

    PubMed  CAS  Google Scholar 

  183. Morris DO, Clayton DJ, Drobatz KJ et al (2002) Response to Malassezia pachydermatis by peripheral blood mononuclear cells from clinically normal and atopic dogs. Am J Vet Res 63:358-362

    PubMed  Google Scholar 

  184. Bond R, Patterson-Kane JC, Lloyd DH (2004) Clinical, histopathological and immunological effects of exposure of canine skin to Malassezia pachydermatis. Med Mycol 42:165-175

    PubMed  CAS  Google Scholar 

  185. Bhattacharyya T, Edward M, Cordery C et al (1998) Colonization of living skin equivalents by Malassezia furfur. Med Mycol 36:15-19

    PubMed  CAS  Google Scholar 

  186. Holland DB, Bojar RA, Jeremy AH et al (2008) Microbial colonization of an in vitro model of a tissue engineered human skin equivalent - a novel approach. FEMS Microbiol Lett 279:110-115

    PubMed  CAS  Google Scholar 

  187. Moore M (1940) Malassezia furfur the cause of tinea versicolor: cultivation of the organism and experimental production of the disease. Arch Dermatol 41:253-260

    Google Scholar 

  188. Drouhet E, Dompmartin D, Papachristou-Moraiti A et al (1980) Experimental dermatitis caused by Pityrosporum ovale and (or) Pityrosporum orbiculare in the guinea pig and the mouse. Sabouraudia 18:149-156

    PubMed  CAS  Google Scholar 

  189. Van Cutsem J, Van Gerven F, Fransen J et al (1990) The in vitro antifungal activity of ketoconazole, zinc pyrithione, and selenium sulfide against Pityrosporum and their efficacy as a shampoo in the treatment of experimental pityrosporosis in guinea pigs. J Am Acad Dermatol 22:993-998

    PubMed  Google Scholar 

  190. Faergemann J (1979) Experimental tinea versicolor in rabbits and humans with Pityrosporum orbiculare. J Invest Dermatol 72:326-329

    PubMed  CAS  Google Scholar 

  191. Faergemann J, Fredriksson T (1981) Experimental infections in rabbits and humans with Pityrosporum orbiculare and P. ovale. J Invest Dermatol 77:314-318

    PubMed  CAS  Google Scholar 

  192. Oble DA, Collett E, Hsieh M et al (2005) A novel T cell receptor transgenic animal model of seborrhoeic dermatitis-like skin disease. J Invest Dermatol 124:151-159

    PubMed  CAS  Google Scholar 

  193. Rosenberg EW, Belew P, Bale G (1980) Effect of topical applications of heavy suspensions of killed Malassezia ovalis on rabbit skin. Mycopath 72:147-154

    CAS  Google Scholar 

  194. Guillot J, Chermette R, Guého E (1994) Prévalence du genre Malassezia chez les mammifères. J Mycol Méd 4:72-79

    Google Scholar 

  195. Gustafson BA (1955) Otitis externa in the dog. A bacteriological and experimental study. PhD Thesis, Royal Veterinary College, Stockholm

    Google Scholar 

  196. Mansfield PD, Boosinger TR, Attleberger MH (1990) Infectivity of Malassezia pachydermatis in the external ear canal of dogs. J Am Anim Hosp Assoc 26:97-100

    Google Scholar 

  197. Uchida Y, Mizutani M, Kubo T et al (1992) Otitis externa induced with Malassezia pachydermatis in dogs and the efficacy of pimaricin. J Vet Med Sci 54:611-614

    PubMed  CAS  Google Scholar 

  198. Bond R, Rose JF, Ellis JW et al (1995) Comparison of two shampoos for treatment of Malassezia pachydermatis-associated seborrhoeic dermatitis in basset hounds. J Small Anim Pract 36:99-104

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ruth Ashbee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ashbee, H.R., Bond, R. (2010). Malassezia Species and Immunity: Host–Pathogen Interactions. In: Boekhout, T., Mayser, P., Guého-Kellermann, E., Velegraki, A. (eds) Malassezia and the Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03616-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03616-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03615-6

  • Online ISBN: 978-3-642-03616-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics