Skip to main content

Kolmogorov-Complexity Based on Infinite Computations

  • Chapter
Efficient Algorithms

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5760))

  • 2233 Accesses

Abstract

We base the theory of Kolmogorov complexity on programs running on a special universal machine M, which computes infinite binary sequences x ∈ {0,1} ∞ . The programs are infinite sequences p ∈ {0,1}*·1·0 ∞ . As length |p| we define the length of the longest prefix of p ending with 1. We measure the distance d(x,y) = 2− n of x,y ∈ {0,1} ∞  by the length n of the longest common prefix of x and y. \(\Delta_M(x,2^{-n})\) is the length of a minimal program p computing a sequence y with d(x,y) ≤ 2− n. It holds \(\Delta_M(x,2^{-n})\leq\Delta_M(x,2^{-(n+1)})\leq n+2\) for all n. We prove that the sets of sequences

$$ K_{\Delta_M} := \bigcup\limits_{c\in\mathcal{N}}\{x\in X^{\infty}:\Delta_M(x,2^{-n})>n-c\quad\textrm{for all n}\} $$
$$ K_{\Delta_M}^{o(n)} := \{x\in X^{\infty}:n+1-\Delta_M(x,2^{-n})=o(n)\} $$

have the measure 1 for memoryless sources with equal probabilities for 0 and 1. The sequences in \(K_{\Delta_M}^{o(n)}\) are Bernoulli sequences. The sequences in \(K_{\Delta_M}\) define collectives in the sense of von Mises up to a set of measure 0 and the sequences in \(K_{\Delta_M}^{o(n)}\) have this property in a certain resricted fom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kolmogorov, A.N.: Drei Zugänge zur Definition des Begriffs Informationsgehalt. Probl. Peredaci Inform. 1, 3–11 (1965) (in Russian)

    Google Scholar 

  2. Martin Löf, P.: The Definition of Random Sequences. Information and Control 8, 602–619 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  3. Schnorr, C.-P.: Zufälligkeit und Wahrscheinlichkeit, eine algorithmische Begründung der Wahrscheinlichkeitstheorie. Lecture Notes in Mathematics, vol. 212, pp. 1–212. Springer, Heidelberg (1971)

    Book  MATH  Google Scholar 

  4. Schnorr, C.-P.: Eine neue Charakterisierung der Zufälligkeit von Folgen, Habilitationsschrift zur Erlangung der Venia Legendi im Fach Mathematik der Universität des Saarlandes (1969)

    Google Scholar 

  5. Chaitin, G.I.: On the Length of Programs to Compute Finite Binary Sequences. J. Assoc. Comp. Machin. 13, 547–569 (1969)

    Article  MATH  Google Scholar 

  6. Chaitin, G.I.: Algorithmic Information Theory. Cambridge University Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  7. Calude, C.: Theories of Computational Complexity. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  8. von Mises, R.: Grundlagen der Wahrscheinlichkeitstheorie. Math. Zeitschrift 5, 5–99 (1910)

    Google Scholar 

  9. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and its Applications, pp. 1–546. Springer, Heidelberg (1993)

    Book  MATH  Google Scholar 

  10. Hotz, G., Gamkrelidze, A., Gärtner, T.: Approximation of Arbitary Sequences by Computable Sequences - A new Approach to Chaitin-Kolmogorov-Complexity, 1–18 (unpublished, 2007); Gärtner T., Hotz, G.: Approximation von Folgen durch berechenbare Folgen - Eine neue Variante der Chaitin-Kolmogorov-Komplexität, Technischer Bericht A 01/02, März 2002, Fakultät für Mathematik und Informatik der Universität des Saarlandes, pp. 1–19

    Google Scholar 

  11. Chadzelek, T., Hotz, G.: Analytic Machines. Theoretical Computer Science 219, 151–167 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hotz, G.: Algorithmische Informationstheorie, pp. 1–142. Teubner Texte zur Informatik, B. G. Teubner Verlag (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hotz, G. (2009). Kolmogorov-Complexity Based on Infinite Computations. In: Albers, S., Alt, H., Näher, S. (eds) Efficient Algorithms. Lecture Notes in Computer Science, vol 5760. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03456-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03456-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03455-8

  • Online ISBN: 978-3-642-03456-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics