Skip to main content

On the efficient computation of high-dimensional integrals and the approximation by exponential sums

  • Conference paper
  • First Online:
Book cover Multiscale, Nonlinear and Adaptive Approximation

Abstract

The approximation of the functions 1/x and \(1/\sqrt{x}\) by exponential sums enables us to evaluate some high-dimensional integrals by products of one-dimensional integrals. The degree of approximation can be estimated via the study of rational approximation of the square root function. The latter has interesting connections with the Babylonian method and Gauss’ arithmetic-geometric process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Almlöf: Elimination of energy denominators in Møller-Plesset perturbation theory by a Laplace transform approach. Chem. Phys. Lett. 176 (1991), 319–320

    Article  Google Scholar 

  2. P.Y. Ayala and G. Scuseria: Linear scaling second-order Moller-Plesset theory in the atomic orbital basis for large molecular systems. J. Chem. Phys. 110 (1999), 3660

    Article  Google Scholar 

  3. J.M. Borwein and P.B. Borwein: Pi and the AGM. John Wiley & Sons, 1987.

    Google Scholar 

  4. D. Braess: Nonlinear Approximation Theory. Springer-Verlag, Berlin, 1986.

    MATH  Google Scholar 

  5. D. Braess: On the conjecture of Meinardus on the rational approximation of e x. J. Approximation Theory 36 (1982), 317–320.

    Article  MATH  MathSciNet  Google Scholar 

  6. D. Braess: Asymptotics for the approximation of wave functions by exponential sums. J. Approximation Theory 83 (1995), 93–103.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Braess and W. Hackbusch: Approximation of 1/x by exponential sums in [1,). IMA J. Numer. Anal. 25 (2005), 685–697

    Article  MATH  MathSciNet  Google Scholar 

  8. E. Cancès, M. Defranceschi, W. Kutzelnigg, C. Le Bris, and Y. Maday: Computational quantum chemistry: a primer. In: ‘Handbook of Numerical Analysis’, X, pp. 3–270, C. Le Bris (ed.), Elsevier, Amsterdam 2003

    Google Scholar 

  9. A.F. Izmaylov and G.E. Scuseria: Resolution of the identity atomic orbital Laplace transformed second order Møller–Plesset theory for nonconducting periodic systems. Phys. Chem. Chem. Phys. 10 (2008), 3421–3429

    Article  Google Scholar 

  10. Y. Jung, R.C. Lochan, A.D. Dutoi, and M. Head-Gordon: Scaled opposite-spin second order Møller–Plesset correlation energy: An economical electronic structure method. J. Chem. Phys. 121 (2004), 9793

    Article  Google Scholar 

  11. L. Grasedyck: Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure. Computing, 72 (2004), 247–265

    Article  MATH  MathSciNet  Google Scholar 

  12. W. Hackbusch: Approximation of \(1/\left\Vert x-y\right\Vert \) by exponentials for wavelet applications. Computing, 76 (2006), 359–366

    Article  MATH  MathSciNet  Google Scholar 

  13. W. Hackbusch: Efficient convolution with the Newton potential in d dimensions. Numer. Math. 110 (2008), 449–489

    Article  MATH  MathSciNet  Google Scholar 

  14. W. Hackbusch: Hierarchische Matrizen – Algorithmen und Analysis. Springer-Verlag, Berlin (to appear in 2009)

    Google Scholar 

  15. M. Häser and J. Almlöf: Laplace transform techniques in Møller–Plesset perturbation theory. J. Chem. Phys. 96 (1992), 489

    Article  Google Scholar 

  16. M. Häser: Møller-Plesset (MP2) perturbation theory for large molecules. Theor. Chim. Acta 87 (1993), 147–173

    Article  Google Scholar 

  17. M. Kobayashi and H. Nakai: Implementation of Surján’s density matrix formulae for calculating second-order Møller–Plesset energy. Chem. Phys. Lett. 420 (2006), 250–255

    Article  Google Scholar 

  18. W. Kutzelnigg: Theory of the expansion of wave functions in a Gaussian basis. Int. J. of Quantum Chemistry 51 (1994), 447–463.

    Article  Google Scholar 

  19. D.S. Lambrecht, B. Doser, and C. Ochsenfeld: Rigorous integral screening for electron correlation methods. J. Chem. Phys. 123 (2005), 184102

    Article  Google Scholar 

  20. D.J. Newman: Rational approximation to e x. J. Approximation Theory 27 (1979), 234–235

    Article  Google Scholar 

  21. E.J. Remez: Sur un procédé convergent d’approximations successives pour déterminer les polynômes d’approximation. Compt. Rend. Acad. Sc. 198 (1934), 2063–2065

    Google Scholar 

  22. R. Rutishauser: Betrachtungen zur Quadratwurzeliteration. Monatshefte Math. 67 (1963), 452–464

    Article  MATH  MathSciNet  Google Scholar 

  23. D. Kats, D. Usvyat and M. Schütz: On the use of the Laplace transform in local correlation methods. Phys. Chem. Chem. Phys., 2008, DOI: 10.1039/b802993h

    Google Scholar 

  24. S. Schweizer, B. Doser, and C. Ochsenfeld: An atomic orbital-based reformulation of energy gradients in second-order Møller–Plesset perturbation theory. J. Chem. Phys. 128 (2008), 154101

    Article  Google Scholar 

  25. H.R. Stahl: Best uniform rational approximation of x α on [0,1]. Acta Math. 190 (2003), 241–306.

    Article  MATH  MathSciNet  Google Scholar 

  26. F. Stenger: Numerical Methods Based of Sinc and Analytic Functions. Springer-Verlag, New York 1993

    Google Scholar 

  27. P.R. Surján: The MP2 energy as a functional of the Hartree–Fock density matrix. Chem. Phys. Lett. 406 (2005), 318–320

    Article  Google Scholar 

  28. A. Takatsuka, S. Ten-no, and W. Hackbusch: Minimax approximation for the decomposition of energy denominators in Laplace-transformed Møller-Plesset perturbation theories. J. Chem. Phys. 129 (2008), 044112

    Article  Google Scholar 

  29. N.S. Vjačeslavov: On the least deviation of the function sign x and its primitives from the rational functions in the L p metrics, 0<p<∞. Math. USSR Sbornik 32 (1977), 19–31

    Article  Google Scholar 

  30. A.K. Wilson and J. Almlöf: Møller-Plesset correlation energies in a localized orbital basis using a Laplace transform technique. Theor. Chim. Acta 95 (1997), 49–62

    Google Scholar 

  31. Webpages www.mis.mpg.de/scicomp/EXP_SUM/1_x/ and ldots/1_sqrtx/ with explanations in …/1_x/tabelle and …/1_sqrtx/tabelle

  32. E.I. Zolotarov: Application of elliptic functions to questions of functions deviating least and most from zero (Russian). Zap. Imp. Akad. Nauk (1877). St. Petersburg 30 no. 5; reprinted in collected works II, pp. 1–59. Izdat, Akad. Nauk SSSR, Moscow 1932.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietrich Braess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Braess, D., Hackbusch, W. (2009). On the efficient computation of high-dimensional integrals and the approximation by exponential sums. In: DeVore, R., Kunoth, A. (eds) Multiscale, Nonlinear and Adaptive Approximation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03413-8_3

Download citation

Publish with us

Policies and ethics