Skip to main content

Earth and Planetary System Science Game Engine

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((TEDUTAIN,volume 5660))

Abstract

The widespread use of on-line computer games makes the medium a prime vehicle for communicating information and their scalability is especially conducive for facilitating global collaboration focused on developing a better understanding of the underpinnings and complexities of planetary systems beginning with climate change. Game engines generally provide an intuitive interface allowing focus to be shifted to the understanding of scientific elements rather than hiding them between a wealth of menus and other counterintuitive user interface components. Unconventional interaction and visualization techniques are introduced as a method to experience geophysical environments. Players are provided with dynamic visualization “assets,” which enable them to discover, interrogate and correlate scientific data in a game space. The spirit of exploration is to give players the impetus to truly understand how complex Earth and planetary systems work and their intrinsic beauty, the impact of humans, and a sense of responsibility to serve as caretakers of those systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Molina, M.J., Sherwood Rowland, F.: Stratospheric sink for chlorofluoromethanes: Chlorine atom catalysed destruction of ozone. Nature 249, 810–812 (1974)

    Article  Google Scholar 

  2. Houghton, J.: Global Warming: The Complete Briefing, 3rd edn. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  3. Alley, R., Berntsen, T., Bindoff, N.L., Chen, Z., Chidthaisong, A., Friedlingstein, P., Gregory, J., Hegerl, G., Heimann, M., Hewitson, B., Hoskins, B., Joos, F., Jouzel, J., Kattsov, V., Lohmann, U., Manning, M., Matsuno, T., Molina, M., Nicholls, N., Overpeck, J., Qin, D., Raga, G., Ramaswamy, V., Ren, J., Rusticucci, M., Solomon, S., Somerville, R., Stocker, T.F., Stott, P., Stouffer, R.J., Whetton, P., Wood, R.A., Wratt, D.: Climate Change 2007: The Physical Science Basis, Summary for Policymakers, Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). WMO and UNEP, Paris (February 2007)

    Google Scholar 

  4. Sherwood Rowland, F.: Atmospheric changes caused by human activities: From science to regulation. Ecology Law Quarterly 27(4), 1261–1293 (2001)

    Google Scholar 

  5. Winchester, S.: Krakatoa: The Day the World Exploded, August 27, 1883. Harper Collins, New York (2003)

    Google Scholar 

  6. Unidentified Sumatran native. Special coverage of the Sumatran earthquake. CNN cable broadcast (December 2004)

    Google Scholar 

  7. Global warming, bulletins from a warmer world. National Geographic, 206(3) (September 2004)

    Google Scholar 

  8. Kolbert, E.: The climate of man. The New Yorker (2005); Part I April 25 81.10:56-71, Part II May 2 81.11:64-73, Part III May 9 81.12:52-63

    Google Scholar 

  9. Titov, V.V., Murty, T.: Asia’s Deadly Waves Simulation. New York Times Interactive Feature, http://www.nytimes.com/packages/khtml/~2004/12/26/international/~0041227QUAKEFEATURE.html

  10. Bank Street College of Education. Asia’s Deadly Waves Lesson Plans. New York Times on the Web Learning Network, http://nytimes.com/learning/issuesindepth/20050104.html

  11. Zender, C.S.: There’s Got To Be A Morning After ‘The Day After Tomorrow. The Orange County Weekly 9(35), 24 (2004)

    Google Scholar 

  12. Libarkin, J.C., Anderson, S.W., Science, J.D., Beilfuss, M., Boone, W.: Qualitative analysis of college students’ ideas about the Earth: Interviews and open-ended questionnaires. Journal of Geoscience Education 53(1), 17–26 (2005)

    Article  Google Scholar 

  13. Venkatesh, A., Kruse, E., Shih, E.C.-F.: The networked home: An analysis of current developments and future trends. Cognition, Technology and Work 5(1), 23–32 (2003)

    Google Scholar 

  14. Jones, S.: Let the Games Begin, Gaming Technology and Entertainment Among College Students. Pew Internet and American Life Project, Pew Research Center (July 2003)

    Google Scholar 

  15. Oblinger, D.G.: The next generation of educational engagement. Journal of Interactive Media in Education, Special Issue on the Educational Semantic Web 8, 1–18 (2004)

    Google Scholar 

  16. ESA. Entertainment software association facts and research, game player data, http://www.theesa.com/facts/~gamerdata.php (downloaded, September 2005)

  17. Lowenstein, D.: State of the industry address (May 18, 2005), Speech Delivered at the 11th Electronic Entertainment Expo. (September 2005), http://www.theesa.com/archives/2005/05/e32005stateo1.php

  18. Information and Communications Technologies, OECD Information Technology Outlook. Organization for Economic Co-Operation and Development (OECD) (2004)

    Google Scholar 

  19. Information and Communications Technologies, OECD Communications Outlook. Organization for Economic Co- Operation and Development (OECD) (2005)

    Google Scholar 

  20. Fox, S., Anderson, J.Q., Rainie, L.: The Future of the Internet. Pew Internet and American Life Project, Pew Research Center (January 2005); Chart: How respondents assessed predictions about the impact of the internet in the next decade, page vi

    Google Scholar 

  21. Gobert, J.: Harnessing technology to support on-line model building and peer collaboration. In: Proceedings of the Teaching Geoscience With Visualization: Using Images, Animations, and Models Effectively Conference, on the cutting edge, February 2004, pp. 10–30 (2004)

    Google Scholar 

  22. Jackson, D.F.: Case studies of microcomputer and interactive video simulations in middle school Earth science teaching. Journal of Science Education and Technology 6(2), 127–141 (1997)

    Article  Google Scholar 

  23. Jackson, S.L., Hu, J.T., Soloway, E.: Scienceworks modeler: Scaffolding the doing of science. In: Conference Companion CHI 1994, ACM CHI, pp. 249– 250 (April 1994)

    Google Scholar 

  24. Chandler, M.A., Shopsin, M., Richards, S., Sohl, L.E.: The Basic Guide to EdGCM, Draft v.2.3.4. Columbia University, New York (2005)

    Google Scholar 

  25. Thompson, O.E., Johnson, D., Kalnay, E., Zhang, D., Cai, M., Suarez, M., Yanuk, D., Schaack, T.: Computationally intensive models in the classroom. Journal of Earth System Science Education 1, 1–13 (2001)

    Google Scholar 

  26. Arkin, P.A., Thompson, O.E., Bonner, W.D.: Diurnal variations of the summertime wind and force field at three midwestern locations. Monthly Weather Review 104, 1012–1022 (1976)

    Google Scholar 

  27. Held, I.M., Suarez, M.J.: A two level primitive equation model designed for climatic sensitivity experiments. Journal of Atmospheric Sciences 35, 206–229 (1978)

    Article  Google Scholar 

  28. GLOBE. GLOBE visualization data directory (2005), http://viz.globe.gov (downloaded March 16, 2005)

  29. Stainforth, D., Kettleborough, J., Martin, A., Simpson, A., Gills, R., Akkas, A., Gualt, R., Collins, M., Gavagham, D., Allen, M.: ClimatePrediction.Net: Design principles for public-resource modeling research. In: Proceedings of the 14th IASTED International Conference, Parallel and Distributed Computing and Systems, pp. 32–38. International Association of Science and Technology for Development (IASTED) (November 2002)

    Google Scholar 

  30. ClimatePrediction.Net, http://www.climateprediction.net (downloaded, August 2005)

  31. McPherson, A., Painter, J., McCormick, P., Ahrens, J., Ragsdale, C.: Visualizations of Earth processes for the American Museum of Natural History. Computer Graphics, 11–15 (February 1999)

    Google Scholar 

  32. Wilson, J.L.: The SimEarth bible. Osborne McGraw-Hill, Berkeley (1991)

    Google Scholar 

  33. McGinnis, S.: Disaster Dynamics: Serious Games for Disaster Education. National Center for Atmospheric Research (NCAR), http://swiki.ucar.edu/~dd/

  34. Erisman, J.W., Hensen, A., de Vries, W., Kros, H., van de Wal, T., de Winter, W., Wien, J.E., van Elswijk, M., Maat, M.: The Nitrogen Decision Support System: NitroGenius, ECN-C-02-012. Energy Research Center of the Netherlands (ECN), Petten (2002)

    Google Scholar 

  35. Winn, W., Windschitl, M., Fruland, R., Lee, Y.: When does immersion in a virtual environment help students construct understanding. In: Proceedings of the International Conference of the Learning Sciences, ICLS 2002, October 2002, pp. 497–503. International Society for the Learning Sciences, ISLS (2002)

    Google Scholar 

  36. Kleiboer, M.: Simulation methodology for crisis management support. Journal of Contingencies and Crisis Management 5(4), 198–206 (1997)

    Article  Google Scholar 

  37. Edith Ackermann. (Y. Kafai and M. Resnieck Eds.) Constructionism in Practice: Designing, thinking, and learning in a digital world, chapter 2 Perspectivetaking and object construction: Two keys to learning, pages 25–37. Mahwah, N.J.: Lawrence Erlbaum, Associates, Inc., 1996. 

    Google Scholar 

  38. Kepes, G.: The Language of Vision. Paul Theobald, Chicago (1944)

    Google Scholar 

  39. Marr, D.: Vision: a computational investigation into the human representation and processing of visual information. W.H. Freeman, San Francisco (1982)

    Google Scholar 

  40. Zeki, S.: Inner Vision: An Exploration of Art and the Brain. Oxford University Press, Oxford (2000)

    Google Scholar 

  41. Healey, C.G., Enns, J.T.: Perception and painting: A search for effective, engaging visualizations. IEEE Computer Graphics and Applications 22(2), 10–15 (2002)

    Article  Google Scholar 

  42. Healey, C.G., Booth, K.S., Enns, J.T.: High-speed visual  estimation using preattentive processing. ACM Transactions on Computer-Human Interaction 3(2), 107–125 (1996)

    Article  Google Scholar 

  43. Lum, E.B., Stompel, A., Ma, K.-L.: Kinetic visualization: A technique for illustrating 3D shape and structure. In: Proceedings of IEEE Visualization 2002, pp. 435–442 (2002)

    Google Scholar 

  44. Lum, E.B., Stompel, A., Ma, K.-L.: Using motion to illustrate static 3D shape - kinetic visualization. IEEE Transactions on Visualization and Computer Graphics 9(2), 115–126 (2003)

    Article  Google Scholar 

  45. Zeki, S., Lamb, M.: The neurology of kinetic art. Brain 117, 607–636 (1994)

    Article  Google Scholar 

  46. Bruckschen, R., Kuester, F., Hamann, B., Joy, K.I.: Real-time out-of-core visualization of particle traces. In: Proceedings of the Parallel and Large Scale Data Visualization and Graphics Symposium, pp. 45–50. IEEE, Los Alamitos (2001)

    Google Scholar 

  47. Kuester, F., Bruckschen, R., Hamann, B., Joy, K.I.: Visualization of particle traces in virtual environments. In: Proceedings of the Virtual Reality Software and Technology Conference, VRST 2001. ACM SIGCHI and SIGGRAPH, pp. 151–157 (November 2001)

    Google Scholar 

  48. Kruger, J., Westermann., R.: GPU simulation and rendering of volumetric effects for computer games and virtual environments. In: Proceedings of Eurographics 2005. European Association for Computer Graphics (August-September 2005)

    Google Scholar 

  49. Rhyne, T.-M.: Computer games’ influence on scientific and information visualization. IEEE Computer 33(12), 154–156 (2000)

    Article  Google Scholar 

  50. Rhyne, T.-M.: Computer games and scientific visualization. Communications of the ACM 45(7), 40–44 (2002)

    Google Scholar 

  51. Lewis, M., Jacobson, J.: Game engines in scientific research. Communications of the ACM 45(1), 27–31 (2002)

    Google Scholar 

  52. Johnston, D.: 3D game engines as a new reality. In: Proceedings of the 4th Annual CM316 Conference on Multimedia Systems. Southampton University, UK (January 2004), http://mms.ecs.soton.ac.uk/mms2004.dj301.pdf (downloaded November 2005 )

  53. Kim, S.-J., Kuester, F., Kim, K.H(K.): A global timestampbased scalable framework for multi-player online games. In: Proceedings of the Fourth International Symposium on Multimedia Software Engineering (MSE 2002), pp. 2–10. Institute of Electrical and Electronics Engineers. IEEE Computer Society (2002)

    Google Scholar 

  54. Fritsch, D., Kada, M.: Visualization using game engines. In: Proceedings of the XXth Congress, Commission 5, 35.B5, pp. 627–631. International Society of Photogrammetry and Remote Sensing (IAPRS) (July 2004)

    Google Scholar 

  55. Perbet, F., Cani, M.-P.: Animating prairies in real-time. In: Proceedings of the Symposium on Interactive 3D Graphics, I3D 2001, pp. 103–110. ACM, New York (2001)

    Chapter  Google Scholar 

  56. Chenney, S.: Flow tiles. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2004, August 2004, pp. 233–242. ACM SIGGRAPH/ Eurographics (2004)

    Google Scholar 

  57. Shi, L., Yu, Y., Wojtan, C., Chenney, S.: Contollable motion synthesis in a gaseous medium. The Visual Computer 21(7), 474–487 (2005)

    Google Scholar 

  58. Harris, M.J.: Real-time cloud rendering for games. In: Programming Track, Proceedings of the Game Developers Conference (GDC), March 2002, pp. 1–5 (2002)

    Google Scholar 

  59. Umenhoffer, T., Kalos, L.S.: Real-time rendering of cloudy natural phenomena with hierarchical depth imposters. In: Proceedings of Eurographics 2005. European Association for Computer Graphics (August-September 2005)

    Google Scholar 

  60. Zyda, M.: From visual simulation to virtual reality to games. IEEE Computer 38(9), 25–32 (2005)

    Article  Google Scholar 

  61. Herwig, A., Paar, P.: Game Engines: Tools for Landscape Visualization and Planning? In: Trends in GIS and Virtualization in Environmental Planning and Design, Anhalt University of Applied Sciences, pp. 162–171. Wichmann Verlag, Heidelberg (2002)

    Google Scholar 

  62. Stang, B.: Game Engines: Features and Possibilities. Institute of Information and Mathematical Modeling @ The Technical University of Denmark (IMM DTU) (September 2003)

    Google Scholar 

  63. Jacobson, J.: Using “CaveUT” to build immersive displays with the unreal tournament engine and a pc cluster. In: Proceedings of the Symposium on Interactive 3D Graphics, I3D 2003, pp. 221–222. ACM, New York (2003)

    Chapter  Google Scholar 

  64. McGrath, D., Hill, D.: Unrealtriage: A game-based simulation for emergency response. In: Proceedings of the 2004 Huntsville Simulation Conference (HSC 2004). The Society for Modeling and Simulation International (October 2004) CDROM HSC121.pdf

    Google Scholar 

  65. Ryan, M., Hill, D., Mc-Grath, D.: Simulation interoperability with a commercial game engine. In: Proceedings of the European Simulation Interoperability Workshop. Simulation Interoperability Standards Organization (SISO) (June 2005) CDROM 05E-SIW-043.pdf

    Google Scholar 

  66. Laird, J.E.: Research in human-level AI using computer games. Communications of the ACM 45(1), 32–35 (2002)

    Google Scholar 

  67. Dianski, N.A., Volodin, E.M.: Simulation of present-day climate with a coupled atmosphere-ocean general circulation model. Izvestiya. Atmospheric and Oceanic Physics (English Translation) 38(6), 732–747 (2002)

    Google Scholar 

  68. Collins, W.D., Bitz, C.M., Blackmon, M.L., Bonan, G.B., Bretherton, C.S., Carton, J.A., Chang, P., Doney, S.C., Hack, J.J., Henderson, T.B., Kiehl, J.T., Large, W.G., McKenna, D.S., Santer, B.D., Smith, R.D.: The community climate system model: CCSM3. For Journal of Climate Special Issue on CCSM (2005), http://www.ccsm.ucar.edu/publications/~jclim04/Papers/SSC1.pdf

  69. Unidata. Network Common Data Form (NetCDF), NetCDF-3.6.0-p1 library (2005), http://www.unidata.ucar.edu/software/netcdf/

  70. Brown-Simmons, G.J., Kuester, F., Knox, C.J.H., Yamaoka, S., Repasky, D.G.: Kepesian visualization: Interacting with Earth data. In: Proceedings of Connectivity, the Tenth Biennial Arts and Technology Symposium at Connecticut College, pp. 25–36. Ammerman Center, Connecticut College, New London (2006)

    Google Scholar 

  71. Scharl, A.: Environmental online communication. Springer, New York (2004)

    Book  Google Scholar 

  72. Halls, P.J. (ed.): Spatial Information and the Environment. Taylor and Francis Inc., London (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brown-Simmons, G.J., Kuester, F., Knox, C.J.H., Yamaoka, S. (2009). Earth and Planetary System Science Game Engine. In: Pan, Z., Cheok, A.D., Müller, W., Rhalibi, A.E. (eds) Transactions on Edutainment II. Lecture Notes in Computer Science, vol 5660. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03270-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03270-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03269-1

  • Online ISBN: 978-3-642-03270-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics