Skip to main content

Fuzzy Cognitive Networks for Maximum Power Point Tracking in Photovoltaic Arrays

  • Chapter

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 247))

Abstract

The studies on the photovoltaic (PV) power generation are extensively increasing, since it is considered as an essentially inexhaustible and broadly available energy resource. However, the output power of the photovoltaic modules depends on solar radiation and temperature of the solar cells. Therefore, to maximize the efficiency of the renewable energy system, it is necessary to track the maximum power point of the PV array and make the array operate near it. Maximum power operation is a challenging problem, since it requires that the system load is capable of using all power available from the PV system at all times. The I-V characteristic of the load must intersect the focus of maximum power points on the I-V characteristics of the PV array for varying insolation and temperature levels. Fuzzy Cognitive Networks (FCN) have been proposed as an operational extension of Fuzzy Cognitive Maps (FCM), which work in continuous interaction with the system they describe and may be used to control it. In this chapter FCN is used to construct a maximum power point tracker (MPPT), which may operate in cooperation with a fuzzy MPPT controller. The proposed scheme outperforms other existing MPPT schemes of the literature giving very good maximum power operation of any PV array under different conditions such as changing insolation and temperature. Moreover it has the ability to adapt to different changes that might happen during the life cycle of the PV module, such as a destroyed cell of the PV array.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hiyama, T., Kouzuma, S., Imakubo, T.: Identification of Optimal Operating Point of PV Modules using Neural Network for Real Time Maximum Power Tracking Control. IEEE Trans. Energy Convers 10(2), 360–367 (1995)

    Article  Google Scholar 

  2. Ro, K., Rahman, S.: Two-Loop Controller for Maximizing Performance of a Grid-Connected Photovoltaic-Fuel Cell Hybrid Power Plant. IEEE Trans. Energy Convers 13(3), 276–281 (1998)

    Article  Google Scholar 

  3. Veerachary, M., Senjyu, T., Uezato, K.: Neural-Network-Based Maximum-Power-Point Tracking of Coupled-Inductor Interleaved-Boost-Converter-Supplied PV System Using Fuzzy Controller. IEEE Transactions on Ind. Electronics 50(4), 749–758 (2003)

    Article  Google Scholar 

  4. Miyatake, M., Kouno, T., Nakano, M.: A Simple Maximum Power Tracking Control Employing Fibonacci Search Algorithm for Power Conditioners of Photovoltaic Generators. In: 10th International Power Electronics and Motion Control Conference (EPE-PEMC 2002) Cavtat & Dubrovnik, Cavtat & Dubrovnik, Croatia (2002)

    Google Scholar 

  5. Bahgat, A.B.G., Helwa, N.H., Ahmad, G.E., El Shenawy, E.T.: Maximum power point tracking controller for PV systems using neural networks. Renewable Energy 30, 1257–1268 (2005)

    Article  Google Scholar 

  6. Salameh, Z., Taylor, D.: Step-up Maximum Power Point Tracker for Photovoltaic Arrays. Solar Energy 44, 57–61 (1990)

    Article  Google Scholar 

  7. Koutroulis, E., Kalaitzakis, K., Voulgaris, N.C.: Development of a Microcontroller-Based, Photovoltaic Maximum Power Point Tracking Control System. IEEE Trans. on Power Electronics 16(1), 46–54 (2001)

    Article  Google Scholar 

  8. Masoum, M.A.S., Dehbonei, H., Fuchs, E.F.: Theoretical and Experimental Analyses of Photovoltaic Systems With Voltage- and Current-Based Maximum Power-Point Tracking. IEEE Trans. Energy Convers 17(4), 514–522 (2002)

    Article  Google Scholar 

  9. Kasa, N., Iida, T., Chen, L.: Flyback inverter controlled by sensorless current MPPT for photovoltaic power system. IEEE Trans.Ind.Electron. 52(4), 1145–1152 (2005)

    Article  Google Scholar 

  10. Kim, I., Kim, M., Youn, M.: New Maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system. IEEE Trans. Ind. Electron. 53(4), 1027–1035 (2006)

    Article  Google Scholar 

  11. Noguchi, T., Togashi, S., Nakamoto, R.: Short-current pulse-based maximum-power-point tracking method for multiple photovoltaic and converter module system. IEEE Trans. Ind. Electron. 49(1), 217–223 (2002)

    Article  Google Scholar 

  12. Noguchi, M., Takayoshi, I.: A control method to charge series connected ultraelectric double-layer capasitors suitable for photovoltaic generation systems combining MPPT control method. IEEE Trans. Ind. Electron. 54(1), 374–383 (2007)

    Article  Google Scholar 

  13. Park, J., Ahn, J., Cho, B., Yu, G.: Dual-module-based maximum-power-point tracking control of photovoltaic systems. IEEE Trans. Ind. Electron. 53(4), 1036–1047 (2006)

    Article  Google Scholar 

  14. Koizumi, H., Mizuno, T., Kaito, T., Noda, Y., Goshima, N., Kawasaki, M., Nagasaka, K., Kurokawa, K.: A novel microcontroller for grid-connected photovoltaic systems. IEEE Trans. Ind. Electron. 53(6), 1889–1897 (2006)

    Article  Google Scholar 

  15. Xiao, W., Lind, M., Dunford, W., Capel, A.: Real time identification of optimal operating points in photovoltaic power systems. IEEE Trans. Ind. Electron. 53(4), 1017–1026 (2006)

    Article  Google Scholar 

  16. Yeong-Chau, K., Tsorng-Juu, L., Jiann-Fuh, C.: Novel maximum-power-point-tracking controller for photovoltaic energy conversion system. IEEE Trans. Ind. Electron. 48(3), 594–601 (2001)

    Article  Google Scholar 

  17. Chihchiang, H., Jongrong, L., Chihming, S.: Implementation of a DSP-controlled photovoltaic system with peak-power tracking. IEEE Trans. Ind. Electron. 45(1), 963–973 (1998)

    Google Scholar 

  18. Xiao, W., Dunford, W., Palmer, P., Capel, A.: Application of centered differentiation and Steepest descent to Maximum Power Point Tracking. IEEE Trans. Ind. Electron. 54(5), 2539–2549 (2007)

    Article  Google Scholar 

  19. Won, C.Y., Kim, D.H., Kim, S.C., Kim, W.S., Kim, H.S.: A New Maximum Power Point Tracker of Photovoltaic Arrays using Fuzzy Controller. In: 25th Annual IEEE Power Electronics Specialists Conference, PESC 1994, June 20-25, vol. 1, pp. 396–403 (1994)

    Google Scholar 

  20. Hilloowala, R.M., Sharaf, A.M.: A rule-based fuzzy logic controller for a PWM inverter in photo-voltaic energy conversion scheme. In: Proceedings in IEEE Industrial Application Society, Annual Meeting, pp. 762–769 (1992)

    Google Scholar 

  21. Senjyu, T., Uezato, K.: Maximum power point tracker using fuzzy control for photovoltaic arrays. In: Proceedings in IEEE International Conference in Industrial Technology, pp. 143–147 (1994)

    Google Scholar 

  22. Simoes, M.G., Franceschetti, N.N., Friedhofer, M.: A Fuzzy Logic based photovoltaic peak power tracking control. In: Proceedings in IEEE International Symposium in Industrial Electronics, pp. 1429–1432 (1998)

    Google Scholar 

  23. Simoes, M.G., Franceschetti, N.N.: Fuzzy Optimization Based Control of a Solar Array”, Electric Power Applications. IEE Proceedings 146(5), 552–558 (1999)

    Google Scholar 

  24. Patcharaprakiti, N., Premrudeepreechacharn, S.: Maximum power point tracking using fuzzy logic control for grid-connected photovoltaic system. In: IEEE Power Engineering Society, Winter Meeting, pp. 372–377 (2002)

    Google Scholar 

  25. Wilamowski, B.M., Li, X.: Fuzzy system based maximum power point tracking for PV system. In: Proceeding of the 28th Annual Conference in IEEE Industrial Electronics Society, pp. 3280–3284 (2002)

    Google Scholar 

  26. Altas, I.H., Sharaf, A.M.: A Novel On-Line MPP Search Algorithm for PV Arrays. IEEE Transactions on Energy Conversion 11(4), 748–754 (1996)

    Article  Google Scholar 

  27. Hua, C., Shen, C.: Study of Maximum Power Tracking Techniques and Control of DC/DC Converters for Photovoltaic Power System. In: 29th Annual IEEE Power Electronics Specialists Conference (1998)

    Google Scholar 

  28. Hua, C., Lin, J., Shen, C.: Implementation of a DSP-controller photovoltaic system with peak power tracking. IEEE Trans. Ind. Electron. 45(1), 99–107 (1998)

    Article  Google Scholar 

  29. Matsukawa, H., Koshiishi, K., Koizumi, H., Kurokawa, K., Hamada, M., Bo, L.: Dynamic evaluation of maximum power point tracking operation with PV array simulator. Solar Energy Materials & Solar Cells 75, 537–546 (2003)

    Article  Google Scholar 

  30. Jantsch, M., et al.: Measurement of PV Maximum Power Point Tracking Performance. In: Proceedings of the 14th European Photovoltaic Solar Energy Conference and Exhibition, Barcelona, Spain, 30 June-4 July (1997)

    Google Scholar 

  31. Kosko, B.: Fuzzy Cognitive Maps. International Journal of Man-Machine Studies, 65–75 (January 1986)

    Google Scholar 

  32. Craiger, P., Coovert, M.D.: Modeling dynamic social and psychological processes withfuzzy cognitive maps. In: IEEE World Congress on Computational Intelligence and Fuzzy Systems, vol. 3, pp. 1873–1877 (1994)

    Google Scholar 

  33. Tsadiras, A., Kouskouvelis, I.: Using Fuzzy Cognitive Maps as a Decision Support System for Political Decisions: The Case of Turkeys Integration into the European Union. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 371–381. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  34. Koulouriotis, D.E., Diakoulakis, I.E., Emiris, D.M.: A fuzzy cognitive map-based stock market model: synthesis, analysis and experimental results. In: 10th IEEE International Conference on Fuzzy Systems, pp. 465–468 (2001)

    Google Scholar 

  35. Carvalho, J.P., Tome, J.A.B.: Qualitative modelling of an economic system using rulebased fuzzy cognitive maps. In: IEEE International Conference on Fuzzy Systems, vol. 2, pp. 659–664 (2004)

    Google Scholar 

  36. Xirogiannis, G., Glykas, M.: Fuzzy Cognitive Maps in Business Analysis and Performance Driven Change. IEEE Transactions on Engineering Management 51(3), 334–351 (2004)

    Article  Google Scholar 

  37. Glykas, M., Xirogiannis, G.: A soft knowledge modeling approach for geographically dispersed financial organizations. Soft Computing 9(8), 579–593 (2005)

    Article  Google Scholar 

  38. Xirogiannis, G., Glykas, M.: IntelligentModeling of e-BusinessMaturity. Expert Systems with Applications 32(2), 687–702 (2007)

    Article  Google Scholar 

  39. Xirogiannis, G., Chytas, P., Glykas, M., Valiris, G.: Intelligent impact assessment of HRM to the shareholder value. Expert Systems with Applications 35(4), 2017–2031 (2008)

    Article  Google Scholar 

  40. Kottas, T., Boutalis, Y., Devedzic, G., Mertzios, B.: A new method for reaching equilibrium points in Fuzzy Cognitive Maps. In: Proceedings of 2nd International IEEE Conference of Intelligent Systems, Varna Burgaria, pp. 53–60 (2004)

    Google Scholar 

  41. Georgopoulos, V., Malandraki, G., Stylios, C.: A fuzzy cognitive map approach to differential diagnosis of specific language impairment. Artificial Intelligence in Medicine 29(3), 261–278 (2003)

    Article  Google Scholar 

  42. Zhang, W., Chen, S., Bezdek, J.: Pool2: A Generic System for CognitiveMap Development and Decision Analysis. IEEE Transactions on Systems, Man, and Cybernetics 19(1), 31–39 (1989)

    Article  Google Scholar 

  43. Kottas, T., Boutalis, Y., Christodoulou, M.: A new method for weight updating in Fuzzy cognitive Maps using system Feedback. In: 2nd International Conference on Informatics in Control, Automation and Robotics (ICINCO 2005), Barcelona, Spain, September 13-17, pp. 202–209 (2005)

    Google Scholar 

  44. Boutalis, Y., Kottas, T., Mertzios, B., Christodoulou, M.: A Fuzzy Rule Based Approach for storing the Knowledge Acquired from Dynamical FCMs. In: 5th International Conference on Technology and Automation (ICTA 2005), Thessalonica, Greece, October 15-16, pp. 119–124 (2005)

    Google Scholar 

  45. Kottas, T.L., Boutalis, Y.S., Christodoulou, M.A.: Fuzzy Cognitive network: A general Framework. Intelligent Decision Technologies 1, 1–14 (2007)

    Google Scholar 

  46. Boutalis, Y., Kottas, T., Christodoulou, M.: On the Existence and Uniqueness of Solutions for the Concept Values in Fuzzy Cognitive Maps. In: Proceedings of 47th IEEE Conference on Decision and Control – CDC 2008, Cancun, Mexico, December 9-11, pp. 98–104 (2008)

    Google Scholar 

  47. Boutalis, Y., Kottas, T., Christodoulou, M.: Adaptive Estimation of Fuzzy Cognitive Maps with proven Stability and Parameter Convergence. IEEE Trans. on Fuzzy Systems (2009), doi:10.1109/TFUZZ, 2017519

    Google Scholar 

  48. Kottas, T., Boutalis, Y., Christodoulou, M.: Bilinear Adaptive Parameter Estimation in Fuzzy Cognitive Networks. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009. LNCS, vol. 5769, pp. 875–884. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  49. Boutalis, Y.S., Karlis, A.D., Kottas, T.L.: Fuzzy Cognitive Networks + Fuzzy Controller as a self adapting control system for Tracking Maximum Power Point of a PV-Array. In: Proceedings in IEEE International Conference on Industrial Electronics, pp. 4355–4360 (2006)

    Google Scholar 

  50. Karlis, A.D., Kottas, T.L., Boutalis, Y.S.: A novel maximum power point tracking method for PV systems using fuzzy cognitive networks (FCN). Electric Power Systems Research 77(3-4), 315–327 (2007)

    Article  Google Scholar 

  51. Kottas, T.L., Boutalis, Y.S., Karlis, A.D.: New Maximum Power Point Tracker for PV Arrays Using Fuzzy Controller in Close Cooperation with Fuzzy Cognitive Networks. IEEE Transactions on Energy Conversion 21(3), 793–803 (2006)

    Article  Google Scholar 

  52. Lee, C.: Fuzzy Logic in Control Systems: Part I and Part II. IEEE Transactions on Systems, Man and Cybernetics 20(2), 404–435 (March/April)

    Google Scholar 

  53. Hua, C., Shen, C.: Comparative Study of Peak Power Tracking Technics for Solar Storage System. In: Proceedings of the 13th Annual Applied Power Electronics Conference and Exposition, vol. 2, pp. 679–685 (1998)

    Google Scholar 

  54. Stylios, C., Groumpos, P.: Fuzzy Cognitive Maps: a model for intelligent supervisory control systems. Computers in Industry 39, 229–238 (1999)

    Article  Google Scholar 

  55. Santos, J., Antunes, F.: Maximum Power Point Tracker for PV Systems, World Climatic and Energy Event, Rio de Janeiro, Brasil, pp. 75–80 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kottas, T.L., Karlis, A.D., Boutalis, Y.S. (2010). Fuzzy Cognitive Networks for Maximum Power Point Tracking in Photovoltaic Arrays. In: Glykas, M. (eds) Fuzzy Cognitive Maps. Studies in Fuzziness and Soft Computing, vol 247. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03220-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03220-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03219-6

  • Online ISBN: 978-3-642-03220-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics