Skip to main content

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 8))

Abstract

The design and characterization of a fully automated and portable capillary waveguide biosensor are discussed in this chapter. Highly specific target recognition is achieved through hybridization of fluid-borne single-stranded DNA sequences extracted from natural targets to the complimentary nucleic acid sequence (“capture probe”) bound to the inner surface of a capillary. The product of hybridization is enumerated through the use of fluorescent labeling. A novel instantaneous normalization scheme based on two photodetectors, together with the use of a standard reference material, enables independent measurements by the instrument. The probability of false-positive target detection is quantified through the development of a target detection error rate. The instrument exhibits low detection limits (~10−13 M) and repeatability of 6%. The sensor can be rearmed through a denaturing step allowing for sequential detection over an extended time period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CWBP:

Capillary waveguide biosensor platform

DNA:

Deoxyribonucleic acid

MMF:

Multimode fiber

NA:

Numerical aperture

PMT:

Photomultiplier tube

SMF:

Singlemode fiber

SNR:

Signal to noise ratio

TDER:

Target detection error rate

A v :

Avogadro’s number

(r,θ,z):

Cylindrical coordinates

(x,y,z):

Cartesian coordinates

c :

Concentration

E e, t :

Events

Γem, ex, nd, hnp, bp :

Transmission coefficient

H nd, hnp, bp :

Transfer functions

k:

Propagation vector

L :

Capillary length

m det, em, ex :

Photon count

M PM, TM :

Number of molecules

n 0, 1, 2, 3 :

Refractive index

N S, B :

Normalized count

p :

Probability

P clad, core, tot :

Optical power

q :

Mode number

Q :

Number of waveguide modes

r 1, 2, 3, 4, p :

Radius

R d :

Ratio of capillary outer to inner diameter

T :

Time interval

V :

Normalized frequency of a waveguide

V sen :

Sensing volume

W M :

Molecular weight

α:

Attenuation coefficient

β q :

Propagation coefficient

δy:

Coating layer thickness

ε :

Molar extinction

Φ 0, ex, em :

Photon flux

η em, ex, col, mol, bk, L, H :

Efficiency

κ:

Extinction ratio

λ o, ex, em :

Wavelength

ν:

Frequency

θ 0,1,2,3,1c :

Angle

σ S, n, B :

Standard deviation

τ H :

Hybridization time

References

  1. Dantzler MM (2004) Methods development and analysis of environmental samples using a nucleic acid hybridization based fiber optic sensors. MS thesis, Stony Brook University

    Google Scholar 

  2. Dhadwal HS, Mukherjee B, Kemp P et al (2007) A dual detector capillary waveguide biosensor for detection and quantification of hybridized target. Anal Chim Acta 598:147–154

    Article  CAS  Google Scholar 

  3. Dhadwal HS, Kemp P, Aller J et al (2004) Capillary waveguide nucleic acid based biosensor. Anal Chim Acta 501:205–217

    Article  CAS  Google Scholar 

  4. Marcuse D (1974) Theory of dielectric optical waveguides. Academic, New York

    Google Scholar 

  5. Saleh BEA, Teich MC (1992) Fundamentals of photonics. Wiley, New York

    Google Scholar 

  6. Gloge D (1971) Weakly guiding fibers. Appl Opt 10:2252–2258

    Article  CAS  Google Scholar 

  7. Carniglia CK, Mandel L, Drexage KH (1988) Absorption and emission of evanescent photons. J Opt Soc Am 6:479–486

    Google Scholar 

  8. Mathies RA, Peck K, Stryer L (1990) Optimization of high-sensitivity fluorescence detection. Anal Chem 62:1786–1791

    Article  CAS  Google Scholar 

  9. Gaigalas AK, Li L, Henderson O et al (2001) The development of fluorescence intensity standards. J Res Natl Inst Stand 106:381–389

    Google Scholar 

  10. Marcuse D (1988) Launching light into fiber cores from sources located in the cladding. J Lightwave Technol 6:1273–1279

    Article  Google Scholar 

  11. Keller BK, DeGrandpre MD, Palmer CP (2007) Waveguiding properties of fiber-optic capillaries for chemical sensing applications. Sensors Actuators B Chem 125:360–371

    Article  Google Scholar 

  12. Vincze L, Janssens K, Adams F (1995) Detailed ray-tracing code for capillary optics. X-Ray Spectrom 24:27–37

    Article  CAS  Google Scholar 

  13. Benoit V, Yappert MC (1996) Effect of capillary properties on sensitivity enhancement in capillary – fiber optical sensors. Anal Chem 68:183–188

    Article  CAS  Google Scholar 

  14. Breimer MA, Gelfand Y, Sadik OA (2003) Integrated capillary fluorescence DNA biosensor. Biosen Bioelectron 18:1135–1147

    Article  CAS  Google Scholar 

  15. Sojka B, Piunno PAE, Wust CC (1999) Evaluating the quality of oligonucleotide that are immobilized on glass supports for biosensor development. Anal Chim Acta 395:273–284

    Article  CAS  Google Scholar 

  16. Wang G, Lowry M, Zhong Z et al (2005) Direct observation of frits and dynamic air bubble formation in capillary electrochromatography using confocal fluorescence microscopy. J. Chromatogr A 1062:275–283

    Article  CAS  Google Scholar 

  17. Kumar A, Larsson O, Parodi D, et al (2000) Silanized nucleic acids: a general platform for DNA immobilization. Nucleic Acids Res 28:E71i–E71vi

    Article  Google Scholar 

  18. Ahn S, Kulis DM, Erdner DL et al (2006) Fiber-optic microarray for simultaneous detection of multiple harmful algal bloom species. Appl Environ Microbiol 72:5742–5749

    Article  CAS  Google Scholar 

  19. Das S, Chakraborty S (2007) Transverse electrodes for improved DNA hybridization in micro-channels. AIChE J 53:1086–1099

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harbans S. Dhadwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dhadwal, H.S. (2010). Capillary Waveguide Biosensor Platform. In: Zourob, M., Lakhtakia, A. (eds) Optical Guided-wave Chemical and Biosensors II. Springer Series on Chemical Sensors and Biosensors, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02827-4_9

Download citation

Publish with us

Policies and ethics