Skip to main content

Label-Free Optical Ring Resonator Bio/Chemical Sensors

  • Chapter
Optical Guided-wave Chemical and Biosensors II

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 8))

Abstract

Optical micro-ring resonator sensors are an emerging category of label-free optical sensors for bio/chemical sensing that have recently been under intensive investigation. Researchers of this technology have been motivated by a tremendous breadth of different applications, including medical diagnosis, environmental monitoring, homeland security, and food quality control, which require sensitive analytical tools. Ring resonator sensors use total internal reflection to support circulating optical resonances called whispering gallery modes (WGMs). The WGMs have an evanescent field of several hundred nanometers into the surrounding medium, and can therefore detect the refractive index change induced when the analyte binds to the resonator surface. Despite the small physical size of a resonator, the circulating nature of the WGM creates extremely long effective lengths, greatly increasing light–matter interaction and improving its sensing performance. Moreover, only small sample volume is needed for detection because the sensors can be fabricated in sizes well below 100 μm. The small footprint allows integration of those ring resonator sensors onto lab-on-a-chip types of devices for multiplexed detection.

This chapter gives an introduction to the ring resonator sensing principles. Different ring resonator configurations are illustrated as well, including microspheres, microfabricated planar ring resonators, and capillary-based opto-fluidic ring resonators. Their sensing performances are evaluated and compared quantitatively. Finally, the future development for ring resonator sensors is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BRIS:

Bulk refractive index sensitivity

BSA:

Bovine serum albumin

DNA:

Deoxyribonucleic acid

OFRR:

Opto-fluidic ring resonator

RI:

Refractive index

RIU:

Refractive index units

RNA:

Ribonucleic acid

WGM:

Whispering gallery mode

L eff :

Effective light–matter interaction length

m :

Integer for angular momentum

n buffer :

Buffer solution refractive index

n eff :

Effective refractive index

n OFRR :

OFRR refractive index

n sphere :

Microsphere refractive index

Q :

Quality factor ring resonator radius

S :

Bulk refractive index sensitivity (BRIS)

αex :

Excess polarizability

δλ:

WGM resonant wavelength shift

ε o :

Vacuum permittivity

λ :

WGM resonant wavelength

σ :

Biomolecule surface density

References

  1. Olsen EV, Sorokulova IB, Petrenko VA et al (2006) Affinity-selected filamentous bacteriophage as a probe for acoustic wave biodetectors of Salmonella typhimurium. Biosens Bioelectron 21:1434–1442

    Article  CAS  Google Scholar 

  2. Jena BK, Raj CR (2006) Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles. Anal Chem 78:6332–6339

    Article  CAS  Google Scholar 

  3. McDonagh C, Burke CS, MacCraith BD (2008) Optical chemical sensors. Chem Rev 108:400–422

    Article  CAS  Google Scholar 

  4. Moerner WE (2007) Single-molecule chemistry and biology special feature: new directions in single-molecule imaging and analysis. Proc Natl Acad Sci USA 104:12596–12602

    Article  CAS  Google Scholar 

  5. Fan X, White IM, Shopova SI et al (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620:8–26

    Article  CAS  Google Scholar 

  6. Heideman RG, Lambeck PV (1999) Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system. Sensors Actuators B Chem 61:100–127

    Article  Google Scholar 

  7. Ymeti A, Kanger JS, Greve J et al (2003) Realization of a multichannel integrated Young interferometer chemical sensor. Appl Opt 42:5649–5660

    Article  CAS  Google Scholar 

  8. Tazawa H, Kanie T, Katayama M (2007) Fiber-optic coupler based refractive index sensor and its applications to biosensing. Appl Phys Lett 91:113901

    Article  Google Scholar 

  9. Ymeti A, Greve J, Lambeck PV et al (2007) Fast, ultrasensitive virus detection using a Young interferometer sensor. Nano Lett 7:394–397

    Article  CAS  Google Scholar 

  10. White IM, Suter JD, Oveys H et al (2007) Universal coupling between metal-clad waveguides and optical ring resonators. Opt Express 15:646–651

    Article  Google Scholar 

  11. Hanumegowda NM, Stica CJ, Patel BC et al (2005) Refractometric sensors based on microsphere resonators. Appl Phys Lett 87:201107

    Article  Google Scholar 

  12. Chao C-Y, Guo LJ (2006) Design and optimization of microring resonators in biochemical sensing applications. J Lightwave Technol 24:1395–1402

    Article  CAS  Google Scholar 

  13. Vollmer F, Arnold S, Braun D et al (2003) Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities. Biophys J 85:1974–1979

    Article  CAS  Google Scholar 

  14. Zhu H, White IM, Suter JD et al (2007) Analysis of biomolecule detection with optofluidic ring resonator sensors. Opt Express 15:9139–9146

    Article  CAS  Google Scholar 

  15. Arnold S, Ramjit R, Keng D et al (2008) Microparticle photophysics illuminates viral bio-sensing. Faraday Discuss 137:65–83

    Article  CAS  Google Scholar 

  16. Blair S, Chen Y (2001) Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities. Appl Opt 40:570–582

    Article  CAS  Google Scholar 

  17. Chao C-Y, Guo LJ (2003) Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl Phys Lett 83:1527–1529

    Article  CAS  Google Scholar 

  18. Krioukov E, Greve J, Otto C (2003) Performance of integrated optical microcavities for refractive index and fluorescence sensing. Sensors Actuators B Chem 90:58–67

    Article  Google Scholar 

  19. Guo J, Vawter GA, Shaw JM et al (2004) Characterization of Si3N4/SiO2 planar lightwave circuits and ring resonators. Proc SPIE 5350:13–22

    CAS  Google Scholar 

  20. Ksendzov A, Homer ML, Manfreda AM (2004) Integrated optics ring-resonator chemical sensor with polymer transduction layer. Electron Lett 40:63–65

    Article  Google Scholar 

  21. Chao C-Y, Fung W, Guo LJ (2006) Polymer microring resonators for biochemical sensing applications. IEEE J Sel Top Quantum Electron 12:134–142

    Article  CAS  Google Scholar 

  22. Martinez L, Lipson M (2006) High confinement suspended micro-ring resonators in silicon-on-insulator. Opt Express 14:6259–6263

    Article  Google Scholar 

  23. Xu DX, Janz S, Cheben P (2006) Design of polarization-insentsitive ring reosnators in silicon-on-insulator using MMI couplers and cladding stress engineering. IEEE Photon Technol Lett 18:343–345

    Article  Google Scholar 

  24. Yalcin A, Popat KC, Aldridge JC et al (2006) Optical sensing of biomolecules using microring resonators. IEEE J Sel Top Quantum Electron 12:148–155

    Article  CAS  Google Scholar 

  25. Barrios CA, Gylfason KB, Sánchez B et al (2007) Slot-waveguide biochemical sensor. Opt Lett 32:3080–3082

    Article  CAS  Google Scholar 

  26. Dai D, He S (2007) Highly-sensitive sensor with large measurement range realized with two cascaded-microring resonators. Opt Commun 279:89–93

    Article  CAS  Google Scholar 

  27. De Vos KM, Bartolozzi I, Bienstman P et al (2007) Optical biosensor based on silicon-on-insulator microring cavities for specific protein binding detection. Proc SPIE 6447:64470K

    Article  Google Scholar 

  28. Schweinsberg A, Hoché S, Lepeshkin NN et al (2007) An environmental sensor based on an integrated optical whispering gallery mode disk resonator. Sensors Actuators B Chem 123:727–732

    Article  Google Scholar 

  29. Barrios CA, Bañuls MJ, González-Pedro V et al (2008) Label-free optical biosensing with slot-waveguides. Opt Lett 33:708–710

    Article  CAS  Google Scholar 

  30. Ramachandran A, Wang S, Clarke J et al (2008) A universal biosensinig platform based on optical micro-ring resonators. Biosens Bioelectron 23:939–944

    Article  CAS  Google Scholar 

  31. Armani DK, Kippenberg TJ, Spillane SM et al (2003) Ultra-high-Q toroid microcavity on a chip. Nature 421:925–928

    Article  CAS  Google Scholar 

  32. Armani AM, Vahala KJ (2006) Heavy water detection using ultra-high-Q microcavities. Opt Lett 31:1896–1898

    Article  CAS  Google Scholar 

  33. Armani AM, Kulkarni RP, Fraser SE et al (2007) Label-free, single-molecule detection with optical microcavities. Science 317:783–787

    Article  CAS  Google Scholar 

  34. Vollmer F, Braun D, Libchaber A et al (2002) Protein detection by optical shift of a resonant microcavity. Appl Phys Lett 80:4057–4059

    Article  CAS  Google Scholar 

  35. Arnold S, Khoshsima M, Teraoka I (2003) Shift of whispering-gallery modes in microspheres by protein adsorption. Opt Lett 28:272–274

    Article  CAS  Google Scholar 

  36. Teraoka I, Arnold S, Vollmer F (2003) Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium. J Opt Soc Am B 20:1937–1946

    Article  CAS  Google Scholar 

  37. Hanumegowda NM, White IM, Fan X (2005) Aqueous mercuric ion detection with microsphere optical ring resonator sensors. Sensors Actuators B Chem 120:207–212

    Article  Google Scholar 

  38. Hanumegowda NM, White IM, Oveys H et al (2005) Label-free protease sensors based on optical microsphere resonators. Sens Lett 3:315–319

    Article  CAS  Google Scholar 

  39. Noto M, Khoshsima M, Keng D et al (2005) Molecular weight dependence of a whispering gallery mode biosensor. Appl Phys Lett 87:223901

    Article  Google Scholar 

  40. Noto M, Vollmer F, Keng D et al (2005) Nanolayer characterization through wavelength multiplexing of a microsphere resonator. Opt Lett 30:510–512

    Article  CAS  Google Scholar 

  41. White IM, Hanumegowda NM, Fan X (2005) Subfemtomole detection of small molecules with microsphere sensors. Opt Lett 30:3189–3191

    Article  CAS  Google Scholar 

  42. Gaathon O, Culic-Viskota J, Mihnev M et al (2006) Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement. Appl Phys Lett 89:223901

    Article  Google Scholar 

  43. Teraoka I, Arnold S (2006) Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications. J Opt Soc Am B 23:1381–1389

    Article  CAS  Google Scholar 

  44. Teraoka I, Arnold S (2006) Enhancing the sensitivity of a whispering-gallery mode microsphere sensor by a high-refractive-index surface layer. J Opt Soc Am B 23:1434–1441

    Article  CAS  Google Scholar 

  45. Zhu H, Suter JD, White IM et al (2006) Aptamer based microsphere biosensor for thrombin detection. Sensors 6:785–795

    Article  CAS  Google Scholar 

  46. Keng D, McAnanama SR, Teraoka I et al (2007) Resonance fluctuations of a whispering gallery mode biosensor by particles undergoing Brownian motion. Appl Phys Lett 91:103902

    Article  Google Scholar 

  47. Noto M, Keng D, Teraoka I et al (2007) Detection of protein orientation on the silica microsphere surface using transverse electric/transverse magnetic whispering gallery modes. Biophys J 92:4466–4472

    Article  CAS  Google Scholar 

  48. Nuhiji E, Mulvaney P (2007) Detection of unlabeled oligonucleotide targets using whispering gallery modes in single, fluorescent microspheres. Small 3:1408–1414

    Article  CAS  Google Scholar 

  49. Jiang X, Chen Y, Vienne G et al (2007) All-fiber add-drop filters based on microfiber knot resonators. Opt Lett 32:1710–1712

    Article  Google Scholar 

  50. Vienne G, Li Y, Tong L (2007) Effect of host polymer on microfiber resonator. IEEE Photon Technol Lett 19:1386–1388

    Article  Google Scholar 

  51. Xu F, Brambilla G (2007) Manufacture of 3-D microfiber coil resonators. IEEE Photon Technol Lett 19:1481–1483

    Article  CAS  Google Scholar 

  52. Xu F, Brambilla G (2008) Demonstration of a refractometric sensor based on optical microfiber coil resonator. Appl Phys Lett 92:101126

    Article  Google Scholar 

  53. White IM, Oveys H, Fan X (2006) Liquid-core optical ring-resonator sensors. Opt Lett 31:1319–1321

    Article  Google Scholar 

  54. White IM, Oveys H, Fan X et al (2006) Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides. Appl Phys Lett 89:191106

    Article  Google Scholar 

  55. Ling T, Guo LJ (2007) A unique resonance mode observed in a prism-coupled micro-tube resonator sensor with superior index sensitivity. Opt Express 15:17424–17432

    Article  Google Scholar 

  56. Sumetsky M, Windeler RS, Dulashko Y et al (2007) Optical liquid ring resonator sensor. Opt Express 15:14376–14381

    Article  CAS  Google Scholar 

  57. Zamora V, Díez A, Andrés MV et al (2007) Refractometric sensor based on whispering-gallery modes of thin capillarie. Opt Express 15:12011–12016

    Article  Google Scholar 

  58. Zhu H, White IM, Suter JD et al (2007) Integrated refractive index optical ring resonator detector for capillary electrophoresis. Anal Chem 79:930–937

    Article  CAS  Google Scholar 

  59. Yang G, White IM, Fan X (2008) An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides. Sensors Actuators B Phys 133:105–112

    Google Scholar 

  60. Zhu H, White IM, Suter JD et al (2008) Phage-based label-free biomolecule detection in an opto-fluidic ring resonator. Biosens Bioelectron 24:461–466

    Article  CAS  Google Scholar 

  61. Zhu H, White IM, Suter JD et al (2008) Opto-fluidic micro-ring resonator for sensitive label-free viral detection. Analyst 133:356–360

    Article  CAS  Google Scholar 

  62. Chang RK, Campillo AJ (eds) (1996) Optical processes in microcavities. World Scientific, Singapore

    Google Scholar 

  63. Gorodetsky ML, Savchenkov AA, Ilchenko VS (1996) Ultimate Q of optical microsphere resonators. Opt Lett 21:453–455

    Article  CAS  Google Scholar 

  64. Fan X, White IM, Zhu H et al (2007) Overview of novel integrated optical ring resonator bio/chemical sensors. Proc SPIE 6452:6520M

    Google Scholar 

  65. Tzeng HM, Wall KF, Long MB (1984) Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances. Opt Lett 9:499–501

    Article  CAS  Google Scholar 

  66. Gorodetsky ML, Ilchenko VS (1999) Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes. J Opt Soc Am B 16:147–154

    Article  CAS  Google Scholar 

  67. Mazzei A, Götzinger S, Menezes LDS et al (2005) Optimization of prism coupling to high-Q modes in a microsphere resonator using a near-field probe. Opt Commun 250:428–433

    Article  CAS  Google Scholar 

  68. Ksendzov A, Lin Y (2005) Integrated optics ring-resonator sensors for protein detection. Opt Lett 30:3344–3346

    Article  CAS  Google Scholar 

  69. Ren H-C, Vollmer F, Arnold S et al (2007) High-Q microsphere biosensor – analysis for adsorption of rodlike bacteria. Opt Express 15:17410–17423

    Article  Google Scholar 

  70. Xu Q, Almeida VR, Panepucci RR et al (2004) Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt Lett 29:1626–1628

    Article  CAS  Google Scholar 

  71. Kippenberg TJ, Spillane SM, Vahala KJ (2004) Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip. Appl Phys Lett 85:6113–6115

    Article  CAS  Google Scholar 

  72. Armani AM, Vahala KJ (2007) Soft lithographic fabrication of microresonators, Digest of the IEEE LEOS Summer Topical Meetings 133–134

    Google Scholar 

  73. Hossein-Zadeh M, Vahala KJ (2007) Free ultra-high-Q microtoroid: a tool for designing photonic devices. Opt Express 15:166–175

    Article  Google Scholar 

  74. Landers JP (1996) Handbook of capillary electrophoresis. CRC Press, Boca Raton, FL

    Google Scholar 

  75. White IM, Fan X (2008) On the performance quantification of resonant refractive index sensors. Opt Express 16:1020–1028

    Article  Google Scholar 

  76. Suter JD, White IM, Zhu H et al (2008) Label-free quantitative DNA detection using the liquid core optical ring resonator. Biosens Bioelectron 23:1003–1009

    Article  CAS  Google Scholar 

  77. Pang F, Han X, Chu F et al (2007) Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method. Sensors Actuators B Chem 120:610–614

    Article  Google Scholar 

  78. Passaro VMN, Dell’Olio F, De Leonardis F (2007) Ammonia optical sensing by microring resonators. Sensors 7:2741–2749

    Article  CAS  Google Scholar 

  79. Shopova SI, White IM, Sun Y et al (2008) On-column micro gas chromatography detection with capillary-based optical ring resonators. Anal Chem 80:2232–2238

    Article  CAS  Google Scholar 

  80. Sun Y, Shopova SI, Frye-Mason G et al (2008) Rapid chemical-vapor sensing using optofluidic ring resonators. Opt Lett 33:788–790

    Article  CAS  Google Scholar 

  81. Tombelli S, Minunni M, Mascini M (2005) Analytical applications of aptamers. Biosens Bioelectron 20:2424–2434

    Article  CAS  Google Scholar 

  82. Petrenko VA, Vodyanoy VJ (2003) Phage display for detection of biological threat agents. J Microbiol Methods 53:253–262

    Article  CAS  Google Scholar 

  83. Jung Y, Jeong JY, Chung BH (2008) Recent advances in immobilization methods of antibodies on solid supports. Analyst 133:697–701

    Article  CAS  Google Scholar 

  84. Weber PC, Ohlendorf DH, Wendoloski JJ et al (1989) Structural origins of high-affinity biotin binding to streptavidin. Science 243:85–88

    Article  CAS  Google Scholar 

  85. Andersson K, Hamalainen M, Malmqvist M (1999) Identification and optimization of regeneration conditions for affinity-based biosensor assays. A multivariate cocktail approach. Anal Chem 71:2475–2481

    Article  CAS  Google Scholar 

  86. De Vos K, Bartolozzi I, Schacht E et al (2007) Silicon-on-insulator microring resonator for sensitive and label-free biosensing. Opt Express 15:7610–7615

    Article  Google Scholar 

  87. White IM, Zhu H, Suter JD et al (2007) Refractometric sensors for lab-on-a-chip based on optical ring resonators. IEEE Sens J 7:28–35

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhu, H., Suter, J.D., Fan, X. (2010). Label-Free Optical Ring Resonator Bio/Chemical Sensors. In: Zourob, M., Lakhtakia, A. (eds) Optical Guided-wave Chemical and Biosensors II. Springer Series on Chemical Sensors and Biosensors, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02827-4_10

Download citation

Publish with us

Policies and ethics