Skip to main content

Issues in Bioartificial Liver Support Therapy for Acute Liver Failure

  • Chapter
  • First Online:
Tissue Engineering

Abstract

Acute liver failure (ALF) is a medically intransigent problem. Survival, however, is etiology dependent and ranges from ∼25% for drug-induced ALF, hepatitis B, and cryptogenic cases to ∼60% for acetaminophen overdose, hepatitis A, and ischemia [73]. Liver transplantation (LTx), with 1-year survival rates of 60–80%, remains the therapy of choice for ALF patients [43, 77]. Because liver tissue has the ability to regenerate and heal [75], restoration of essential liver functions by means of auxiliary methods may improve the prognosis of many ALF patients, alleviating the need for LTx [8, 10, 73]. Recognition of the regenerative capacity of the liver has led to the development of innovative treatments for ALF that include split-LTx, extracorporeal nonbiological detoxification by artificial liver (AL) support, extracorporeal bioartificial liver (BAL) support (cell-based systems), and in vivo tissue or cell transplantation [37]. BAL bioreactor design faces several challenges that must collectively be satisfied in order to create a clinically viable system: (1) adequate cell seeding/cell density; (2) adequate transport of oxygen, nutrients, and toxins to the cells; (3) adequate transport of metabolic products from the cells; and (4) maintenance of sufficient hepatocyte-specific function over the time needed to meet a desired therapeutic goal. Therapeutic goals for systems designed to support patients with liver failure will become better defined as more systems are placed into clinical evaluation. This in turn will define the therapeutic, harmacokinetic dose, i.e., Da, that functional support systems must have to achieve clinical acceptance. Given that, the clinical efficacy of both AL (detoxification) and BAL (cell-based metabolic support) will be verified in the next 10 years. However, the clinical timing and indication will be different for the two systems: detoxification approaches will be employed earlier in the disease progression and, most likely, for AoCLF while BAL support will be used to support ALF patients and will be used when the disease continues to progress despite best medical therapy and detoxification. Research will focus on hepatic cell source in order to address ready availability, activity and function, and relatively low cost. Identification of human stem cell-derived hepatic cells to address immunologic concerns and species differences in metabolism as well as understanding and controlling the proliferation and differentiation of liver progenitor cells to functional hepatocytes will be important topics. Strategies proposed to improve mass transport in bioreactors and liver support systems are reviewed. Future BAL designs will rely heavily on pharmacological and engineering (mathematical) modeling of the entire patient/bioreactor perfusion system rather than just the bioreactor alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu-Absi SF, Friend JR, Hansen LK, Hu WS. Structural polarity and functional bile canaliculi in rat hepatocyte spheroids. Exp Cell Res. 2002;274:56–67.

    Article  CAS  PubMed  Google Scholar 

  2. Aladag M, Gurakar A, Jalil S, Wright H, Alamian S, Rashwan S, et al. A liver transplant center experience with liver dialysis in the management of patients with fulminant hepatic failure: a preliminary report. Transplant Proc. 2004;36:203–5.

    Article  CAS  PubMed  Google Scholar 

  3. Alison M. Hepatic stem cells. Transplant Proc. 2002;34: 2702–5.

    Article  CAS  PubMed  Google Scholar 

  4. Allen JW, Hassanein T, Bhatia SN. Advances in bioartificial liver devices. Hepatology. 2001;34:447–55.

    Article  CAS  PubMed  Google Scholar 

  5. Arterburn LM, Zurlo J, Yager JD, Overton RM, Heifetz AH. A morphological study of differentiated hepatocytes in vitro. Hepatology. 1995;22:175–87.

    CAS  PubMed  Google Scholar 

  6. Asano K, Koide N, Tsuji T. Ultrastructure of multicellular spheroids formed in the primary culture of adult rat hepatocytes. J Clin Electron Microsc. 1989;22:243–52.

    Google Scholar 

  7. Balis UJ, Behnia K, Dwarakanath B, Bhatia SN, Sullivan SJ, Yarmush ML, et al. Oxygen consumption characteristics of porcine hepatocytes. Metab Eng. 1999;1:49–62.

    Article  CAS  PubMed  Google Scholar 

  8. Bernal W, Auzinger G, Sizer E, Wendon J. Intensive care management of acute liver failure. Semin Liver Dis. 2008;28: 188–200.

    Article  PubMed  Google Scholar 

  9. Bilir BM, Guinette D, Karrer F, Kumpe DA, Krysl J, Stephens J, et al. Hepatocyte transplantation in acute liver failure [see comment]. Liver Transpl. 2000;6:32–40.

    CAS  PubMed  Google Scholar 

  10. Blei AT. Selection for acute liver failure: have we got it right? Liver Transpl. 2005;11:S30–4.

    Article  PubMed  Google Scholar 

  11. Block GD, Locker J, Bowen WC, Petersen BE, Katyal S, Strom SC, et al. Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGF alpha in a chemically defined (HGM) medium. J Cell Biol. 1996;132: 1133–49.

    Article  CAS  PubMed  Google Scholar 

  12. Braet F, Wisse E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol. 2002;1:1–17.

    Article  PubMed  Google Scholar 

  13. Brill S, Holst P, Sigal S, Zvibel I, Fiorino A, Ochs A, et al. Hepatic progenitor populations in embryonic, neonatal, and adult liver. Proc Soc Exp Biol Med. 1993;204:261–9.

    CAS  PubMed  Google Scholar 

  14. Brotherton JD, Chau PC. Modeling of axial-flow hollow fiber cell culture bioreactors. Biotechnol Prog. 1996;12:575–90.

    Article  CAS  Google Scholar 

  15. Catapano G, De Bartolo L, Lombardi CP, Drioli E. The effect of catabolite concentration on the viability and functions of isolated rat hepatocytes. Int J Artif Organs. 1996; 19:245–50.

    CAS  PubMed  Google Scholar 

  16. Catapano G, De Bartolo L, Lombardi CP, Drioli E. The effect of oxygen transport resistances on the viability and functions of isolated rat hepatocytes. Int J Artif Organs. 1996;19:61–71.

    CAS  PubMed  Google Scholar 

  17. Catapano G, Gerlach JC. Bioreactors for liver tissue engineering. In: Ashammakhi N, Reis R, Chiellini E, editors. Topic in Tissue Engineering, Vol. 3, 2007, Chapter 8, Eds. N Ashammakhi, R Reis & E Chiellini.

    Google Scholar 

  18. Chatauret N, Rose C, Therrien G, Butterworth RF. Mild hypothermia prevents cerebral edema and CSF lactate accumulation in acute liver failure. Metab Brain Dis. 2001;16:95–102.

    Article  CAS  PubMed  Google Scholar 

  19. Chawla LS, Georgescu F, Abell B, Seneff MG, Kimmel PL. Modification of continuous venovenous hemodiafiltration with single-pass albumin dialysate allows for removal of serum bilirubin. Am J Kidney Dis. 2005;45:e51–6.

    Article  PubMed  Google Scholar 

  20. De Bartolo L, Jarosch-Von Schweder G, Haverich A, Bader A. A novel full-scale flat membrane bioreactor utilizing porcine hepatocytes: cell viability and tissue-specific functions. Biotechnol Prog. 2000;16:102–8.

    Article  PubMed  CAS  Google Scholar 

  21. de Rave S, Tilanus HW, van der Linden J, de Man RA, van der Berg B, Hop WC, et al. The importance of orthotopic liver transplantation in acute hepatic failure. Transpl Int. 2002;15:29–33.

    Article  PubMed  Google Scholar 

  22. Deasy BM, Huard J. Gene therapy and tissue engineering based on muscle-derived stem cells. Curr Opin Mol Ther. 2002;4:382–9.

    CAS  PubMed  Google Scholar 

  23. Demetriou AA, Brown RS, Busuttil RW, Fair J, McGuire BM, Rosenthal P, et al. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg. 2004;239:660–7.

    Article  PubMed  Google Scholar 

  24. Depner TA. Prescribing hemodialysis: a guide to urea modeling. Boston, MA: Kluwer Academic Publishers; 1991.

    Google Scholar 

  25. Dhawan A, Mitry RR, Hughes RD. Hepatocyte transplantation for liver-based metabolic disorders. J Inherit Metab Dis. 2006;29:431–5.

    Article  PubMed  Google Scholar 

  26. Dixit V, Gitnick G. Artificial liver support: state of the art. Scand J Gastroenterol. 1996;31:101–14.

    Article  Google Scholar 

  27. Dowling DJ, Mutimer DJ. Artificial liver support in acute liver failure. Eur J Gastroenterol Hepatol. 1999;11:991–6.

    Article  CAS  PubMed  Google Scholar 

  28. Ellis A, Wendon J. Circulatory, respiratory, cerebral, and renal derangements in acute liver failure: pathophysiology and management. Semin Liver Dis. 1996;16:379–88.

    Article  CAS  PubMed  Google Scholar 

  29. Ellis AJ, Hughes RD, Wendon JA, Dunne J, Langley PG, Kelly JH, et al. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology. 1996;24:1446–51.

    Article  CAS  PubMed  Google Scholar 

  30. Fisher RA, Bu D, Thompson M, Tisnado J, Prasad U, Sterling R, et al. Defining hepatocellular chimerism in a liver failure patient bridged with hepatocyte infusion. Transplantation. 2000;69:303–7.

    Article  CAS  PubMed  Google Scholar 

  31. Forbes S, Vig P, Poulsom R, Thomas H, Alison M. Hepatic stem cells. J Pathol. 2002;197:510–8.

    Article  PubMed  Google Scholar 

  32. Freshney R. Culture of animal cells – a manual of basic techniques. 4th ed. New York: Wiley Liss.

    Google Scholar 

  33. Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88:125–72.

    Article  CAS  PubMed  Google Scholar 

  34. Funatsu K, Ijima H, Nakazawa K, Yamashita Y, Shimada M, Sugimachi K. Hybrid artificial liver using hepatocyte organoid culture. Artif Organs. 2001;25:194–200.

    Article  CAS  PubMed  Google Scholar 

  35. Gebhardt R. Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol Ther. 1992;53: 275–354.

    Article  CAS  PubMed  Google Scholar 

  36. Gerlach JC. Prospects of the use of hepatic cells for extracorporeal liver support. Acta Gastroenterol Belg. 2005;68:358–68.

    PubMed  Google Scholar 

  37. Gerlach JC, Zeilinger K, Patzer JF II. Bioartificial liver: why, what, whither. Regenerative Med. 2008;3:575–95.

    Google Scholar 

  38. Gerlach JC, Zeilinger K, Sauer IM, Mieder T, Naumann G, Grunwald A, et al. Extracorporeal liver support: porcine or human cell based systems? Int J Artif Organs. 2002;25:1013–8.

    CAS  PubMed  Google Scholar 

  39. Gill RQ, Sterling RK. Acute liver failure. J Clin Gastroenterol. 2001;33:191–8.

    Article  CAS  PubMed  Google Scholar 

  40. Gruttadauria S, Mandala L, Miraglia R, Caruso S, Minervini MI, Biondo D, et al. Successful treatment of small-for-size syndrome in adult-to-adult living-related liver transplantation: single center series. Clin Transplant. 2007;21:761–6.

    PubMed  Google Scholar 

  41. Guery C, Secchi J, Vannier B, Fournex R, Lorenzon G. Formation of bile canaliculi in long-term primary cultures of adult rat hepatocytes on permeable membrane: an ultrastructural study. Cytopathology. 1995;6:255–67.

    Article  CAS  PubMed  Google Scholar 

  42. Habibullah CM, Syed IH, Qamar A, Taher-Uz Z. Human fetal hepatocyte transplantation in patients with fulminant hepatic failure. Transplantation. 1994;58:951–2.

    Article  CAS  PubMed  Google Scholar 

  43. Hadem J, Stiefel P, Bahr MJ, Tillmann HL, Rifai K, Klempnauer J, et al. Prognostic implications of lactate, bilirubin, and etiology in German patients with acute liver failure. Clin Gastroenterol Hepatol. 2008;6:339–45.

    Article  CAS  PubMed  Google Scholar 

  44. Hamilton GA, Westmorel C, George AE. Effects of medium composition on the morphology and function of rat hepatocytes cultured as spheroids and monolayers. In Vitro Cell Dev Biol Anim. 2001;37:656–67.

    Article  CAS  PubMed  Google Scholar 

  45. Hay PD, Veitch AR, Gaylor JD. Oxygen transfer in a convection-enhanced hollow fiber bioartificial liver. Artif Organs. 2001;25:119–30.

    Article  CAS  PubMed  Google Scholar 

  46. Hay PD, Veitch AR, Smith MD, Cousins RB, Gaylor JD. Oxygen transfer in a diffusion-limited hollow fiber bioartificial liver. Artif Organs. 2000;24:278–88.

    Article  CAS  PubMed  Google Scholar 

  47. Hoekstra R, Chamuleau RAFM. Recent developments on human cell lines for the bioartificial liver. Int J Artif Organs. 2002;25:182–91.

    CAS  PubMed  Google Scholar 

  48. Horslen SP, McCowan TC, Goertzen TC, Warkentin PI, Cai HB, Strom SC, et al. Isolated hepatocyte transplantation in an infant with a severe urea cycle disorder. Pediatrics. 2003;111:1262–7.

    Article  PubMed  Google Scholar 

  49. Hubbard AL, Varr VA, Scott LJ. Hepatocyte surface polarity. In: Arias IM, Boyer JL, Fausto N, Jakoby WB, Schachter DA, editors. The liver: biology and pathobiology. New York: Raven Press; 1994.

    Google Scholar 

  50. Hughes RD, Pucknell A, Routley D, Langley PG, Wendon JA, Williams R. Evaluation of the BioLogic-DT sorbent-suspension dialyser in patients with fulminant hepatic failure. Int J Artif Organs. 1994;17:657–62.

    CAS  PubMed  Google Scholar 

  51. Ijima H, Matsushita T, Nakazawa K, Fujii Y, Funatsu K. Hepatocyte spheroids in polyurethane foams: functional analysis and application for a hybrid artificial liver. Tissue Eng. 1998;4:213–26.

    Article  CAS  Google Scholar 

  52. Ijima H, Nakazawa K, Mizumoto H, Matsushita T, Funatsu K. Formation of a spherical multicellular aggregate (spheroid) of animal cells in the pores of polyurethane foam as a cell culture substratum and its application to a hybrid artificial liver. J Biomater Sci Polym Ed. 1998;9:765–78.

    Article  CAS  PubMed  Google Scholar 

  53. Isacson O. The production and use of cells as therapeutic agents in neurodegenerative diseases. Lancet Neurol. 2003;2: 417–24.

    Article  CAS  PubMed  Google Scholar 

  54. Iwata H, Sajiki T, Maeda H, Park YG, Zhu B, Satoh S, et al. In vitro evaluation of metabolic functions of a bioartificial liver. ASAIO J. 1999;45:299–306.

    Article  CAS  PubMed  Google Scholar 

  55. Iwata H, Ueda Y. Pharmacokinetic considerations in development of a bioartificial liver. Clin Pharmacokinet. 2004;43: 211–25.

    Article  PubMed  Google Scholar 

  56. Jalan R. Intracranial hypertension in acute liver failure: pathophysiological basis of rational management. Semin Liver Dis. 2003;23:271–82.

    Article  PubMed  Google Scholar 

  57. Jungermann K, Kietzmann T. Oxygen: modulator of metabolic zonation and disease of the liver. Hepatology. 2000; 31:255–60.

    Article  CAS  PubMed  Google Scholar 

  58. Jungermann K, Thurman RG. Hepatocyte heterogeneity in the metabolism of carbohydrates. Enzyme. 1992;46:33–58.

    CAS  PubMed  Google Scholar 

  59. Kaczorowski DJ, Patterson ES, Jastromb WE, Shamblott MJ. Glucose-responsive insulin-producing cells from stem cells. Diabetes Metab Res Rev. 2002;18:442–50.

    Article  CAS  PubMed  Google Scholar 

  60. Kamihira M, Yamada K, Hamamoto R, Iijima S. Spheroid formation of hepatocytes using synthetic polymer. Ann N Y Acad Sci. 1997;831:398–407.

    Article  CAS  PubMed  Google Scholar 

  61. Kietzmann T, Jungermann K. Modulation by oxygen of zonal gene expression in liver studied in primary rat hepatocyte cultures. Cell Biol Toxicol. 1997;13:243–55.

    Article  CAS  PubMed  Google Scholar 

  62. Kim SS, Utsunomiya H, Koski JA, Wu BM, Cima MJ, Sohn J, et al. Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels [see comment]. Ann Surg. 1998;228:8–13.

    Article  CAS  PubMed  Google Scholar 

  63. Kjaergard LL, Liu JP, Als-Nielsen B, Gluud C. Artificial and bioartificial support systems for acute and acute-on-chronic liver failure – a systematic review. JAMA. 2003;289:217–22.

    Article  PubMed  Google Scholar 

  64. Kobayashi N, Ito M, Nakamura J, Cai J, Hammel JM, Fox IJ. Treatment of carbon tetrachloride and phenobarbital-induced chronic liver failure with intrasplenic hepatocyte transplantation. Cell Transplant. 2000;9:671–3.

    CAS  PubMed  Google Scholar 

  65. Koide N, Sakaguchi K, Koide Y, Asano K, Kawaguchi M, Matsushima H, et al. Formation of multicellular spheroids composed of adult rat hepatocytes in dishes with positively charged surfaces and under other nonadherent environments. Exp Cell Res. 1990;186:227–35.

    Article  CAS  PubMed  Google Scholar 

  66. Kramer L, Bauer E, Schenk P, Steininger R, Vigl M, Mallek R. Successful treatment of refractory cerebral oedema in ecstasy/cocaine-induced fulminant hepatic failure using a new high-efficacy liver detoxification device (FPSA-Prometheus). Wien Klin Wochenschr. 2003;115:599–603.

    Article  CAS  PubMed  Google Scholar 

  67. Kreymann B, Seige M, Schweigart U, Kopp KF, Classen M. Albumin dialysis: effective removal of copper in a patient with fulminant Wilson disease and successful bridging to liver transplantation: a new possibility for the elimination of protein-bound toxins. J Hepatol. 1999;31:1080–5.

    Article  CAS  PubMed  Google Scholar 

  68. Kusano M, Mito M. A study of hepatocellular transplantation. Nippon Rinsho. 1992;50:1679–88.

    CAS  PubMed  Google Scholar 

  69. Landry J, Bernier D, Ouellet C, Goyette R, Marceau N. Spheroidal aggregate culture of rat liver cells: histotypic reorganization, biomatrix deposition, and maintenance of functional activities. J Cell Biol. 1985;101:914–23.

    Article  CAS  PubMed  Google Scholar 

  70. Langsch A, Bader A. Longterm stability of phase I and phase II enzymes of porcine liver cells in flat membrane bioreactors. Biotechnol Bioeng. 2001;76:115–25.

    Article  CAS  PubMed  Google Scholar 

  71. Lazar A, Mann HJ, Remmel RP, Shatford RA, Cerra FB, Hu WS. Extended liver-specific functions of porcine hepatocyte spheroids entrapped in collagen gel. In Vitro Cell Dev Biol Anim. 1995;31:340–6.

    Article  CAS  PubMed  Google Scholar 

  72. Lee WM. Acute liver failure in the United States. Semin Liver Dis. 2003;23:217–26.

    Article  CAS  PubMed  Google Scholar 

  73. Lee WM, Squires Jr RH, Nyberg SL, Doo E, Hoofnagle JH. Acute liver failure: summary of a workshop. Hepatology. 2008;47:1401–15.

    Article  PubMed  Google Scholar 

  74. Legallais C, David B, Dore E. Bioartificial livers (BAL): current technological aspects and future developments. J Memb Sci. 2001;181:81–95.

    Article  CAS  Google Scholar 

  75. Lin TY, Lee CS, Chen CC, Lian KY, Lin WSJ. Regeneration of human liver after hepatic lobectomy studies by repeated liver scanning and repeated needle biopsy. Ann Surg. 1979;190:48–53.

    Article  CAS  PubMed  Google Scholar 

  76. Lindros KO. Zonation of cytochrome P450 expression, drug metabolism and toxicity in liver. Gen Pharmacol. 1997;28: 191–6.

    CAS  PubMed  Google Scholar 

  77. Liou IW, Larson AM. Role of liver transplantation in acute liver failure. Semin Liver Dis. 2008;28:201–9.

    Article  PubMed  Google Scholar 

  78. Mazariegos GV, Kramer DJ, Lopez RC, Shakil AO, Rosenbloom AJ, DeVera M, et al. Safety observations in Phase I clinical evaluation of the Excorp Medical Bioartificial Liver Support System after the first four patients. ASAIO J. 2001;47:471–5.

    Article  CAS  PubMed  Google Scholar 

  79. Mazariegos GV, Patzer JF II, Lopez RC, Giraldo M, deVera ME, Grogan TA, et al. First clinical use of a novel bioartificial liver support system (BLSS). Am J Transpl. 2002;2: 260–6.

    Google Scholar 

  80. Michalopoulos GK, Bowen WC, Mule K, Stolz DB. Histological organization in hepatocyte organoid cultures. Am J Pathol. 2001;159:1877–87.

    CAS  PubMed  Google Scholar 

  81. Miller RD. Anesthesia. Philadelphia, PA: Churchill Livingstone; 2000.

    Google Scholar 

  82. Millis JM, Cronin DC, Johnson R, Conjeevaram H, Conlin C, Trevino S, et al. Initial experience with the modified extracorporeal liver-assist device for patients with fulminant hepatic failure: system modifications and clinical impact. Transplantation. 2002;74:1735–46.

    Article  PubMed  Google Scholar 

  83. Mitzner SR, Stange J, Klammt S, Peszynski P, Schmidt R, Noldge-Schomburg G. Extracorporeal detoxification using the molecular adsorbent recirculating system for critically ill patients with liver failure. J Am Soc Nephrol. 2001;12 Suppl 17:S75–82.

    CAS  PubMed  Google Scholar 

  84. Moghe PV, Berthiaume F, Ezzell RM, Toner M, Tompkins RG, Yarmush ML. Culture matrix configuration and composition in the maintenance of hepatocyte polarity and function. Biomaterials. 1996;17:373–85.

    Article  CAS  PubMed  Google Scholar 

  85. Morsiani E, Brogli M, Galavotti D, Pazzi P, Puviani AC, Azzena GF. Biologic liver support: optimal cell source and mass. Int J Artif Organs. 2002;25:985–93.

    CAS  PubMed  Google Scholar 

  86. Morsiani E, Pazzi P, Puviani AC, Brogli M, Valieri L, Gorini P, et al. Early experiences with a porcine hepatocyte-based bioartificial liver in acute hepatic failure patients. Int J Artif Organs. 2002;25:192–202.

    CAS  PubMed  Google Scholar 

  87. Mueller-Klieser WF, Sutherland RM. Oxygen tensions in multicell spheroids of two cell lines. Br J Cancer. 1982; 45:256–64.

    CAS  PubMed  Google Scholar 

  88. Mullhaupt B, Dimitroulis D, Gerlach JT, Clavien PA. Hot topics in liver transplantation: organ allocation – extended criteria donor – living donor liver transplantation. J Hepatol. 2008;48 Suppl 1:S58–67.

    Article  PubMed  Google Scholar 

  89. Mundt A, Puhl G, Muller A, Sauer L, Muller C, Richard R, et al. A method to assess biochemical activity of liver cells during clinical application of extracorporeal hybrid liver support. Int J Artif Organs. 2002;25:542–8.

    CAS  PubMed  Google Scholar 

  90. Muraca M, Gerunda G, Neri D, Vilei MT, Granato A, Feltracco P, et al. Hepatocyte transplantation as a treatment for glycogen storage disease type 1a [erratum appears in Lancet. 2002;359(9316):1528]. Lancet. 2002;359:317–8.

    Google Scholar 

  91. Nakae H, Yonekawa C, Wada H, Asanuma Y, Sato T, Tanaka H. Effectiveness of combining plasma exchange and continuous hemodiafiltration (combined modality therapy in a parallel circuit) in the treatment of patients with acute hepatic failure. Ther Apher. 2001;5:471–5.

    Article  CAS  PubMed  Google Scholar 

  92. O’Grady JG, Schalm SW, Williams R. Acute liver-failure – redefining the syndromes. Lancet. 1993;342:273–5.

    Article  PubMed  Google Scholar 

  93. Okubo H, Matsushita M, Kamachi H, Kawai T, Takahashi M, Fujimoto T, et al. A novel method for faster formation of rat liver cell spheroids. Artif Organs. 2002;26:497–505.

    Article  CAS  PubMed  Google Scholar 

  94. Park YG, Iwata H, Ikada Y. Derivation of pharmacokinetics equations for quantitative evaluation of bioartificial liver functions. Ann NY Acad Sci 2001;944:296–307.

    Google Scholar 

  95. Patzer JF II. Advances in bioartificial liver assist devices. Ann N Y Acad Sci. 2001;944:320–33.

    Google Scholar 

  96. Patzer JF II. Oxygen consumption in a hollow fiber bioartificial liver – revisited. Artif Organs. 2004;28:83–98.

    Google Scholar 

  97. Patzer JF II. Principles of bound solute dialysis. Ther Apher Dial. 2006;10:118–24.

    Google Scholar 

  98. Patzer JF II, Bane SE. Bound solute dialysis. ASAIO J. 2003;49:271–81.

    Google Scholar 

  99. Patzer JF II, Campbell B, Miller R. Plasma versus whole blood perfusion in a bioartificial liver assist device. ASAIO J. 2002;48:226–33.

    Google Scholar 

  100. Patzer JF II, Safta SA, Miller RH. Slow continuous ultrafiltration with bound solute dialysis. ASAIO J. 2006;52 :47–58.

    Google Scholar 

  101. Peshwa MV, Wu FJ, Follstad BD, Cerra FB, Hu WS. Kinetics of hepatocyte spheroid formation. Biotechnol Prog. 1994;10:460–6.

    Article  CAS  Google Scholar 

  102. Peshwa MV, Wu FJ, Sharp HL, Cerra FB, Hu WS. Mechanistics of formation and ultrastructural evaluation of hepatocyte spheroids. In Vitro Cell Dev Biol Anim. 1996;32:197–203.

    Article  CAS  PubMed  Google Scholar 

  103. Polson J, Lee WM. Etiologies of acute liver failure: location, location, location! [comment]. Liver Transpl. 2007; 13:1362–3.

    Article  PubMed  Google Scholar 

  104. Powers MJ, Domansky K, Kaazempur-Mofrad MR, Kalezi A, Capitano A, Upadhyaya A, et al. A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol Bioeng. 2002;78:257–69.

    Article  CAS  PubMed  Google Scholar 

  105. Powers MJ, Janigian DM, Wack KE, Baker CS, Beer Stolz D, Griffith LG. Functional behavior of primary rat liver cells in a three-dimensional perfused microarray bioreactor. Tissue Eng. 2002;8:499–513.

    Article  PubMed  Google Scholar 

  106. Poyck PPC, Wijk ACWA, van der Hoeven TV, de Waart DR, Chamuleau RAFM, van Gulik TM, et al. Evaluation of a new immortalized human fetal liver cell line (cBAL111) for application in bioartificial liver. J Hepatol. 2008;48: 266–75.

    Article  CAS  PubMed  Google Scholar 

  107. Raper SE, Grossman M, Rader DJ, Thoene JG, Clark BJ III, Kolansky DM, et al. Safety and feasibility of liver-directed ex vivo gene therapy for homozygous familial hypercholesterolemia [see comment]. Ann Surg. 1996; 223:116–26.

    Google Scholar 

  108. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.

    Article  CAS  PubMed  Google Scholar 

  109. Rifai K, Ernst T, Kretschmer U, Bahr MJ, Schneider A, Hafer C, et al. Prometheus – a new extracorporeal system for the treatment of liver failure. J Hepatol. 2003;39: 984–90.

    Article  CAS  PubMed  Google Scholar 

  110. Ringe J, Kaps C, Burmester GR, Sittinger M. Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften. 2002;89:338–51.

    Article  CAS  PubMed  Google Scholar 

  111. Rotem A, Toner M, Bhatia S, Foy BD, Tompkins RG, Yarmush ML. Oxygen is a factor determining in-vitro tissue assembly – effects on attachment and spreading of hepatocytes. Biotechnol Bioeng. 1994;43:654–60.

    Article  CAS  PubMed  Google Scholar 

  112. Sajiki T, Iwata H, Paek HJ, Tosha T, Fujita S, Ueda Y, et al. Morphologic studies of hepatocytes entrapped in hollow fibers of a bioartificial liver. ASAIO J. 2000;46:49–55.

    Article  CAS  PubMed  Google Scholar 

  113. Sato Y, Ochiya T, Yasuda Y, Matsubara K. A new three-dimensional culture system for hepatocytes using reticulated polyurethane. Hepatology. 1994;19:1023–8.

    Article  CAS  PubMed  Google Scholar 

  114. Sauer IM, Zeilinger K, Obermayer N, Pless G, Grunwald A, Pascher A, et al. Primary human liver cells as source for modular extracorporeal liver support – a preliminary report. Int J Artif Organs. 2002;25:1001–5.

    CAS  PubMed  Google Scholar 

  115. Sauer IM, Zeilinger K, Pless G, Kardassis D, Theruvath T, Pascher A, et al. Extracorporeal liver support based on primary human liver cells and albumin dialysis – treatment of a patient with primary graft non-function. J Hepatol. 2003; 39:649–53.

    Article  PubMed  Google Scholar 

  116. Schneider F, Lutun P, Boudjema K, Wolf P, Tempe JD. In vivo evidence of enhanced guanylyl cyclase activation during the hyperdynamic circulation of acute liver failure. Hepatology. 1994;19:38–44.

    Article  CAS  PubMed  Google Scholar 

  117. Scientific Registry of Transplant Recipients. National transplant statistics. http://www.ustransplant.org (2008).

  118. Seglen PO. Preparation of rat liver cells. I. Effect of Ca2+ on enzymatic dispersion of isolated, perfused liver. Exp Cell Res. 1972;74:450–4.

    Article  CAS  PubMed  Google Scholar 

  119. Seglen PO. Preparation of rat liver cells. 3. Enzymatic requirements for tissue dispersion. Exp Cell Res. 1973; 82:391–8.

    Article  CAS  PubMed  Google Scholar 

  120. Seglen PO. Preparation of rat liver cells. II. Effects of ions and chelators on tissue dispersion. Exp Cell Res. 1973; 76:25–30.

    Article  CAS  PubMed  Google Scholar 

  121. Seige M, Kreymann B, Jeschke B, Schweigart U, Kopp KF, Classen M. Long-term treatment of patients with acute exacerbation of chronic liver failure by albumin dialysis. Transplant Proc. 1999;31:1371–5.

    Article  CAS  PubMed  Google Scholar 

  122. Selden C, Hodgson H. Cellular therapies for liver replacement. Transpl Immunol. 2004;12:273–88.

    Article  CAS  PubMed  Google Scholar 

  123. Sell S. Heterogeneity and plasticity of hepatocyte lineage cells. Hepatology. 2001;33:738–50.

    Article  CAS  PubMed  Google Scholar 

  124. Sigal SH, Brill S, Fiorino AS, Reid LM. The liver as a stem cell and lineage system. Am J Physiol. 1992;263:G139–48.

    CAS  PubMed  Google Scholar 

  125. Stange J, Hassanein TI, Mehta R, Mitzner SR, Bartlett RH. The molecular adsorbents recycling system as a liver support system based on albumin dialysis: a summary of preclinical investigations, prospective, randomized, controlled clinical trial, and clinical experience from 19 centers. Artif Organs. 2002;26:103–10.

    Article  PubMed  Google Scholar 

  126. Strauer BE, Brehm M, Zeus T, Gattermann N, Hernandez A, Sorg RV, et al. Intrakoronare, humane autologe Stammzelltransplantation zur Myokardregeneration nach Herzinfarkt. Dtsch Med Wochenschr. 2001;126:932–8.

    Article  CAS  PubMed  Google Scholar 

  127. Strom SC, Chowdhury JR, Fox IJ. Hepatocyte transplantation for the treatment of human disease. Semin Liver Dis. 1999;19:39–48.

    Article  CAS  PubMed  Google Scholar 

  128. Strom SC, Fisher RA, Thompson MT, Sanyal AJ, Cole PE, Ham JM, et al. Hepatocyte transplantation as a bridge to orthotopic liver transplantation in terminal liver failure. Transplantation. 1997;63:559–69.

    Article  CAS  PubMed  Google Scholar 

  129. Surapaneni S, Pryor T, Klein MD, Matthew HW. Rapid hepatocyte spheroid formation: optimization and long-term function in perfused microcapsules. ASAIO J. 1997; 43:M848–53.

    Article  CAS  PubMed  Google Scholar 

  130. Sutherland RM, Sordat B, Bamat J, Gabbert H, Bourrat B, Mueller-Klieser W. Oxygenation and differentiation in multicellular spheroids of human colon carcinoma. Cancer Res. 1986;46:5320–9.

    CAS  PubMed  Google Scholar 

  131. Tannock IF. Oxygen diffusion and the distribution of cellular radiosensitivity in tumours. Br J Radiol. 1972;45: 515–24.

    Article  CAS  PubMed  Google Scholar 

  132. Theise ND, Saxena R, Portmann BC, Thung SN, Yee H, Chiriboga L, et al. The canals of Hering and hepatic stem cells in humans. Hepatology. 1999;30:1425–33.

    Article  CAS  PubMed  Google Scholar 

  133. Tong JZ, Bernard O, Alvarez F. Long-term culture of rat liver cell spheroids in hormonally defined media. Exp Cell Res. 1990;189:87–92.

    Article  CAS  PubMed  Google Scholar 

  134. Trewby PN, Williams R. Pathophysiology of hypotension in patients with fulminant hepatic failure. Gut. 1977;18: 1021–6.

    Article  CAS  PubMed  Google Scholar 

  135. van de Kerkhove MP, Di Florio E, Scuderi V, Mancini A, Belli A, Bracco A, et al. Phase I clinical trial with the AMC-bioartificial liver. Int J Artif Organs. 2002;25: 950–9.

    PubMed  Google Scholar 

  136. van de Kerkhove MP, Hoekstra R, Chamuleau RAFM, van Gulik TM. Clinical application of bioartificial liver support systems. Ann Surg. 2004;240:216–30.

    Article  PubMed  Google Scholar 

  137. Vaupel P. Hypoxia in neoplastic tissue. Microvasc Res. 1977;13:399–408.

    Article  CAS  PubMed  Google Scholar 

  138. Wilson CA. Porcine endogenous retroviruses and xenotransplantation. Cell Mol Life Sci. 2008;65:3399–412.

    Article  CAS  PubMed  Google Scholar 

  139. Wu FJ, Friend JR, Hsiao CC, Zilliox MJ, Ko WJ, Cerra FB, et al. Efficient assembly of rat hepatocyte spheroids for tissue engineering applications. Biotechnol Bioeng. 1996; 50:404–15.

    Article  CAS  PubMed  Google Scholar 

  140. Xu ASL, Luntz TL, MacDonald JM, Kubota H, Hsu E, London RE, et al. Lineage and biology and liver. In: Lanza RP, Langer R, Vacanti JP, editors. Principles of tissue engineering. 2nd ed. San Diego, CA: Academic Press; 1999. p. 559–98.

    Google Scholar 

  141. Yagi K, Tsuda K, Serada M, Yamada C, Kondoh A, Miura Y. Rapid formation of multicellular spheroids of adult rat hepatocytes by rotation culture and their immobilization within calcium alginate. Artif Organs. 1993;17:929–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Patzer II .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Patzer, J.F., Gerlach, J.C. (2011). Issues in Bioartificial Liver Support Therapy for Acute Liver Failure. In: Pallua, N., Suscheck, C. (eds) Tissue Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02824-3_11

Download citation

Publish with us

Policies and ethics