Skip to main content

Minimally Invasive Refractive Surgery

  • Chapter
Minimally Invasive Ophthalmic Surgery

Refractive surgery is the newest subspecialty in ophthalmology, gaining popularity after the introduction of photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK) in the 1980s and 1990s respectively. Whilst LASIK is the most popular refractive surgery technique today, it is by no means the only refractive surgery technique available. Rapid development in technology and surgical techniques in the field of refractive surgery has led to a wide range of surgical techniques available to the refractive surgeon today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Aizawa D, Shimizu K Komatsu M et al (2003) Clinical outcomes of wavefront-guided laser in situ keratomileusis: 6-month follow-up. J Cataract Refract Surg 29:1507–1513

    Article  PubMed  Google Scholar 

  2. Alfonso JF, Fernandez-Vega L, Senaris A, Montes-Mico R (2007) Prospective study of the Acri.LISA bifocal intraocular lens. J Cataract Refract Surg 33:1930–1935

    Article  PubMed  Google Scholar 

  3. Alio J, Rodriguez-Prats JL, Galal A, Ramzy M (2005) Outcomes of microincision cataract surgery versus coaxial phacoemulsification. Ophthalmology 112:1997–2003

    Article  PubMed  Google Scholar 

  4. Alio JL, Muftuoglu O Ortiz D et al (2008) Ten-year follow-up of photorefractive keratectomy for myopia of less than -6 diopters. Am J Ophthalmol 145:29–36

    Article  PubMed  Google Scholar 

  5. Alio JL, Muftuoglu O Ortiz D et al (2008) Ten-year follow-up of photorefractive keratectomy for myopia of more than -6 diopters. Am J Ophthalmol 145:37–45

    Article  PubMed  Google Scholar 

  6. Alio JL, Rodriguez-Prats JL, Vianello A, Galal A (2005) Visual outcome of microincision cataract surgery with implantation of an Acri.Smart lens. J Cataract Refract Surg 31:1549–1556

    Article  PubMed  Google Scholar 

  7. Awwad ST, Lehmann JD, McCulley JP, Bowman RW (2007) A comparison of higher order aberrations in eyes implanted with AcrySof IQ SN60WF and AcrySof SN60AT intraocular lenses. Eur J Ophthalmol 17:320–326

    PubMed  CAS  Google Scholar 

  8. Bahar I, Levinger S, Kremer I (2007) Wavefront-guided LASIK for myopia with the Technolas 217z: results at 3 years. J Refract Surg 23:586–590; discussion

    PubMed  Google Scholar 

  9. Baumeister M, Buhren J, Kohnen T (2004) Position of angle-supported, iris-fixated, and ciliary sulcus-implanted myopic phakic intraocular lenses evaluated by Scheimpflug photography. Am J Ophthalmol 138:723–731

    Article  PubMed  Google Scholar 

  10. Bedei A, Marabotti A Giannecchini I et al (2006) Photorefractive keratectomy in high myopic defects with or without intraoperative mitomycin C: 1-year results. Eur J Ophthalmol 16:229–234

    PubMed  CAS  Google Scholar 

  11. Bellucci R, Morselli S, Pucci V (2007) Spherical aberration and coma with an aspherical and a spherical intraocular lens in normal age-matched eyes. J Cataract Refract Surg 33:203–209

    Article  PubMed  Google Scholar 

  12. Bellucci R, Scialdone A, Buratto L et al (2005) Visual acuity and contrast sensitivity comparison between Tecnis and AcrySof SA60AT intraocular lenses: a multicenter randomized study. J Cataract Refract Surg 31:712–717

    Article  PubMed  Google Scholar 

  13. Binder PS (2006) One thousand consecutive IntraLase laser in situ keratomileusis flaps. J Cataract Refract Surg 32:962–969

    Article  PubMed  Google Scholar 

  14. Budo C, Hessloehl JC, Izak M et al (2000) Multicenter study of the Artisan phakic intraocular lens. J Cataract Refract Surg 26:1163–1171

    Article  PubMed  CAS  Google Scholar 

  15. Caporossi A, Martone G, Casprini F, Rapisarda L (2007) Prospective randomized study of clinical performance of 3 aspheric and 2 spherical intraocular lenses in 250 eyes. J Refract Surg 23:639–648

    PubMed  Google Scholar 

  16. Carvalho MJ, Suzuki SH, Freitas LL et al (2007) Limbal relaxing incisions to correct corneal astigmatism during pha-coemulsification. J Refract Surg 23:499–504

    PubMed  Google Scholar 

  17. Caster AI, Hoff JL, Ruiz R (2005) Conventional vs wave-front-guided LASIK using the LADARVision4000 excimer laser. J Refract Surg 21:S786–S791

    PubMed  Google Scholar 

  18. Chen WR, Ye HH, Qian YY et al (2006) Comparison of higher-order aberrations and contrast sensitivity between Tecnis Z9001 and CeeOn 911A intraocular lenses: a prospective randomized study. Chin Med J (Engl) 119:1779–1784

    Google Scholar 

  19. Csutak A, Silver DM, Tozser J et al (2004) Urokinase-type plasminogen activator to prevent haze after photorefractive keratectomy, and pregnancy as a risk factor for haze in rabbits. Invest Ophthalmol Vis Sci 45:1329–1333

    Article  PubMed  Google Scholar 

  20. Dejaco-Ruhswurm I, Scholz U, Pieh S et al (2002) Longterm endothelial changes in phakic eyes with posterior chamber intraocular lenses. J Cataract Refract Surg 28:1589–1593

    Article  PubMed  Google Scholar 

  21. Dick HB, Alio J, Bianchetti M et al (2003) Toric phakic intraocular lens: European multicenter study. Ophthalmology 110:150–162

    Article  PubMed  Google Scholar 

  22. Durrie DS, Kezirian GM (2005) Femtosecond laser versus mechanical keratome flaps in wavefront-guided laser in situ keratomileusis: prospective contralateral eye study. J Cataract Refract Surg 31:120–126

    Article  PubMed  Google Scholar 

  23. Elkady B, Alio JL, Ortiz D, Montalban R (2008) Corneal aberrations after microincision cataract surgery. J Cataract Refract Surg 34:40–45

    Article  PubMed  Google Scholar 

  24. He R, Qu M, Yu S (2005) Comparison of NIDEK CATz wave-front-guided LASIK to traditional LASIK with the NIDEK CXII excimer laser in myopia. J Refract Surg 21: S646–S649

    PubMed  Google Scholar 

  25. Hofmann RF, Bechara SJ (1992) An independent evaluation of second generation suction microkeratomes. Refract Corneal Surg 8:348–354

    PubMed  CAS  Google Scholar 

  26. Holladay JT, Piers PA, Koranyi G et al (2002) A new intraocular lens design to reduce spherical aberration of pseudopha-kic eyes. J Refract Surg 18:683–691

    PubMed  Google Scholar 

  27. Horn JD (2007) Status of toric intraocular lenses. Curr Opin Ophthalmol 18:58–61

    Article  PubMed  Google Scholar 

  28. Hosny M, Alio JL, Claramonte P et al (2000) Relationship between anterior chamber depth, refractive state, corneal diameter, and axial length. J Refract Surg 16:336–340

    PubMed  CAS  Google Scholar 

  29. Jacobs JM, Taravella MJ (2002) Incidence of intraoperative flap complications in laser in situ keratomileusis. J Cataract Refract Surg 28:23–28

    Article  PubMed  Google Scholar 

  30. Katsanevaki VJ, Kalyvianaki MI, Kavroulaki DS, Pallikaris IG (2007) One-year clinical results after epi-LASIK for myopia. Ophthalmology 114:1111–1117

    Article  PubMed  Google Scholar 

  31. Kezirian GM, Stonecipher KG (2004) Comparison of the IntraLase femtosecond laser and mechanical keratomes for laser in situ keratomileusis. J Cataract Refract Surg 30:804–811

    Article  PubMed  Google Scholar 

  32. Kohnen T, Buhren J, Kuhne C, Mirshahi A (2004) Wavefront-guided LASIK with the Zyoptix 3.1 system for the correction of myopia and compound myopic astigmatism with 1-year follow-up: clinical outcome and change in higher order aberrations. Ophthalmology 111:2175–2185

    Article  PubMed  Google Scholar 

  33. Kohnen T, Mahmoud K, Buhren J (2005) Comparison of corneal higher-order aberrations induced by myopic and hyperopic LASIK. Ophthalmology 112:1692

    PubMed  Google Scholar 

  34. Kurz S, Krummenauer F, Thieme H, Dick HB (2007) Contrast sensitivity after implantation of a spherical versus an aspherical intraocular lens in biaxial microincision cataract surgery. J Cataract Refract Surg 33:393–400

    Article  PubMed  Google Scholar 

  35. Lackner B, Pieh S, Schmidinger G et al (2003) Outcome after treatment of ametropia with implantable contact lenses. Ophthalmology 110:2153–2161

    Article  PubMed  Google Scholar 

  36. Lee DH, Chung HS, Jeon YC et al (2005) Photorefractive keratectomy with intraoperative mitomycin-C application. J Cataract Refract Surg 31:2293–2298

    Article  PubMed  Google Scholar 

  37. Liang J, Williams DR (1997) Aberrations and retinal image quality of the normal human eye. J Opt Soc Am A Opt Image Sci Vis 14:2873–2883

    Article  PubMed  CAS  Google Scholar 

  38. Maldonado-Codina C, Morgan PB, Efron N (2001) Thermal consequences of photorefractive keratectomy. Cornea 20:509–515

    Article  PubMed  CAS  Google Scholar 

  39. Medeiros FW, Stapleton WM, Hammel J et al (2007) Wavefront analysis comparison of LASIK outcomes with the femtosecond laser and mechanical microkeratomes. J Refract Surg 23:880–887

    PubMed  Google Scholar 

  40. Mohan RR, Hutcheon AE, Choi R et al (2003) Apoptosis, necrosis, proliferation, and myofibroblast generation in the stroma following LASIK and PRK. Exp Eye Res 76:71–87

    Article  PubMed  CAS  Google Scholar 

  41. Moller-Pedersen T, Cavanagh HD, Petroll WM, Jester JV (1998) Corneal haze development after PRK is regulated by volume of stromal tissue removal. Cornea 17:627–639

    Article  PubMed  CAS  Google Scholar 

  42. Moller-Pedersen T, Cavanagh HD, Petroll WM, Jester JV (1998) Neutralizing antibody to TGFbeta modulates stromal fibrosis but not regression of photoablative effect following PRK. Curr Eye Res 17:736–747

    Article  PubMed  CAS  Google Scholar 

  43. Muller-Jensen K, Fischer P, Siepe U (1999) Limbal relaxing incisions to correct astigmatism in clear corneal cataract surgery. J Refract Surg 15:586–589

    PubMed  CAS  Google Scholar 

  44. Munoz G, Albarran-Diego C, Montes-Mico R et al (2006) Spherical aberration and contrast sensitivity after cataract surgery with the Tecnis Z9000 intraocular lens. J Cataract Refract Surg 32:1320–1327

    Article  PubMed  Google Scholar 

  45. Nakamura K, Kurosaka D, Bissen-Miyajima H, Tsubota K (2001) Intact corneal epithelium is essential for the prevention of stromal haze after laser assisted in situ keratomileu-sis. Br J Ophthalmol 85:209–213

    Article  PubMed  CAS  Google Scholar 

  46. Nassaralla BA, McLeod SD, Nassaralla JJ Jr (2007) Prophylactic mitomycin C to inhibit corneal haze after pho-torefractive keratectomy for residual myopia following radial keratotomy. J Refract Surg 23:226–232

    PubMed  Google Scholar 

  47. Netto MV, Mohan RR, Ambrosio R Jr et al (2005) Wound healing in the cornea: a review of refractive surgery complications and new prospects for therapy. Cornea 24:509–522

    Article  PubMed  Google Scholar 

  48. Netto M V, Mohan RR, Sinha S et al (2006) Effect of prophylactic and therapeutic mitomycin C on corneal apoptosis, cellular proliferation, haze, and long-term keratocyte density in rabbits. J Refract Surg 22:562–574

    PubMed  Google Scholar 

  49. Nuijts RM, Nabar VA, Hament WJ, Eggink FA (2002) Wavefront-guided versus standard laser in situ keratomileu-sis to correct low to moderate myopia. J Cataract Refract Surg 28:1907–1913

    Article  PubMed  Google Scholar 

  50. O'Doherty M, Kirwan C, O'Keeffe M, O'Doherty J (2007) Postoperative pain following epi-LASIK, LASEK, and PRK for myopia. J Refract Surg 23:133–138

    PubMed  Google Scholar 

  51. Pallikaris IG, Naoumidi II, Kalyvianaki MI, Katsanevaki VJ (2003) Epi-LASIK: comparative histological evaluation of mechanical and alcohol-assisted epithelial separation. J Cataract Refract Surg 29:1496–1501

    Article  PubMed  Google Scholar 

  52. Pepose JS, Feigenbaum SK, Qazi MA, Merchea M (2007) Comparative performance of the Zyoptix XP and Hansatome zero-compression microkeratomes. J Cataract Refract Surg 33:1386–1391

    Article  PubMed  Google Scholar 

  53. Phusitphoykai N, Tungsiripat T, Siriboonkoom J, Vongthongsri A (2003) Comparison of conventional versus wavefront-guided laser in situ keratomileusis in the same patient. J Refract Surg 19:S217–S220

    PubMed  Google Scholar 

  54. Sanders DR, Vukich JA (2002) Incidence of lens opacities and clinically significant cataracts with the implantable contact lens: comparison of two lens designs. J Refract Surg 18:673–682

    PubMed  Google Scholar 

  55. Sandoval HP, Fernandez de Castro LE, Vroman DT, Solomon KD (2008) Comparison of visual outcomes, photo-pic contrast sensitivity, wavefront analysis, and patient satisfaction following cataract extraction and IOL implantation: aspheric vs spherical acrylic lenses. Eye 22:1469–1475

    Article  PubMed  CAS  Google Scholar 

  56. Scalinci SZ, Scorolli L, De Martino L et al (2005) Effect of cytochrome c peroxidase on corneal epithelial healing process after photorefractive keratectomy. J Cataract Refract Surg 31:1928–1931

    Article  PubMed  Google Scholar 

  57. Schallhorn S, Tanzer D, Sanders DR, Sanders ML (2007) Randomized prospective comparison of visian toric implantable collamer lens and conventional photorefractive keratectomy for moderate to high myopic astigmatism. J Refract Surg 23:853–867

    PubMed  Google Scholar 

  58. Schipper I, Suppelt C, Gebbers JO (1997) Mitomycin C reduces scar formation after excimer laser (193 nm) photore-fractive keratectomy in rabbits. Eye 11(Pt 5):649–655

    Article  PubMed  Google Scholar 

  59. Solomon KD, Donnenfeld E, Sandoval HP et al (2004) Flap thickness accuracy: comparison of 6 microkeratome models. J Cataract Refract Surg 30:964–977

    Article  PubMed  Google Scholar 

  60. Sun X Y, Vicary D, Montgomery P, Griffiths M (2000) Toric intraocular lenses for correcting astigmatism in 130 eyes. Ophthalmology 107:1776–1781

    Article  PubMed  CAS  Google Scholar 

  61. Tran DB, Sarayba MA, Bor Z et al (2005) Randomized prospective clinical study comparing induced aberrations with IntraLase and Hansatome flap creation in fellow eyes: potential impact on wavefront-guided laser in situ keratomileusis. J Cataract Refract Surg 31:97–105

    Article  PubMed  Google Scholar 

  62. Tzelikis PF, Akaishi L, Trindade FC, Boteon JE (2008) Spherical aberration and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses: A comparative study. Am J Ophthalmol 145:827–833

    Article  PubMed  Google Scholar 

  63. Uusitalo RJ, Aine E, Sen NH, Laatikainen L (2002) Implantable contact lens for high myopia. J Cataract Refract Surg 28:29–36

    Article  PubMed  Google Scholar 

  64. Walker MB, Wilson SE (2000) Lower intraoperative flap complication rate with the Hansatome microkeratome compared to the Automated Corneal Shaper. J Refract Surg 16:79–82

    PubMed  CAS  Google Scholar 

  65. Wang L, Koch DD (2003) Anterior corneal optical aberrations induced by laser in situ keratomileusis for hyperopia. J Cataract Refract Surg 29:1702–1708

    Article  PubMed  Google Scholar 

  66. Williams DK (1997) Multizone photorefractive keratectomy for high and very high myopia: long-term results. J Cataract Refract Surg 23:1034–1041

    Article  PubMed  CAS  Google Scholar 

  67. Wilson SE, Mohan RR, Mohan RR et al (2001) The corneal wound healing response: cytokine-mediated interaction of the epithelium, stroma, and inflammatory cells. Prog Retin Eye Res 20:625–637

    Article  PubMed  CAS  Google Scholar 

  68. Xu H, Liu S, Xia X et al (2001) Mitomycin C reduces haze formation in rabbits after excimer laser photorefractive kera-tectomy. J Refract Surg 17:342–349

    PubMed  CAS  Google Scholar 

  69. Yoon G, MacRae S, Williams DR, Cox IG (2005) Causes of spherical aberration induced by laser refractive surgery. J Cataract Refract Surg 31:127–135

    Article  PubMed  Google Scholar 

  70. Zhong Y, Cheng F, Zhou Y et al (2000) The changes of TGF-alpha, TGF-beta 1 and basic FGF messenger RNA expression in rabbit cornea after photorefractive keratectomy. Yan Ke Xue Bao 16:176–180

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alio, J.L., Rosman, M., Mosquera, S.A. (2010). Minimally Invasive Refractive Surgery. In: Fine, I.H., Mojon, D.S. (eds) Minimally Invasive Ophthalmic Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02602-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02602-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02601-0

  • Online ISBN: 978-3-642-02602-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics