Skip to main content

Spectroscopic Methods

  • Chapter
  • First Online:
  • 2864 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 151))

Abstract

Historically, there have been eras where a particular spectroscopic method has dominated IR and THz research. At the end of the nineteenth century and into the early twentieth century, prisms were employed, with the alternatives being wire transmission gratings, or interferometers when only simple spectra were involved (Sect. 1.2). This situation changed with the introduction of the very efficient blazed reflection grating in 1910, which had the ability to concentrate a large percentage of the light into a single order [15]. For the next fifty years, grating spectroscopy was the dominant technique at frequencies below the range covered by prisms. The next change occurred with the availability of digital computers from the late 1950s onward. This allowed interpretation of the complex signals produced by interferometers when many frequencies were involved. Interferometers have inherent advantages compared to dispersive systems, and became the primary tool for routine spectroscopy. Time-domain spectroscopic systems, and an increasing number of narrow-band tunable sources, are now supplementing conventional spectroscopic methods in an increasing number of applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T.G. Blaney, Infrared and Millimeter Waves (Academic Press, New York, London, Toronto, Sydney, San Francisco, 1980), Submillimeter Techniques, vol. 3, chap. 1 – Detection Techniques at Short Millimeter and Submillimeter Wavelengths: An Overview, p. 2

    Google Scholar 

  2. J.W. Fleming, High resolution submillimeter-wave Fourier-transform spectrometry of gases, IEEE Trans. Microw. Theor. Tech. 22, 1023 (1974)

    Google Scholar 

  3. S. Paine, R. Blundell, D.C. Papa, J.W. Barrett, S.J.E. Radford, A Fourier transform spectrometer for measurement of atmospheric transmission at submillimeter wavelengths, Publ. Astron. Soc. Pac. (PASP) 112(767), 108 (2000)

    Google Scholar 

  4. H. Yang, C.A. Kulesa, C.K. Walker, N.F.H. Tothill, J. Yang, M.C.B. Ashley, X. Cui, L. Feng, J.S. Lawrence, D.M. Luong-Van, M.J. McCaughrean, J.W.V. Storey, L. Wang, X. Zhou, Z. Zhu, Exceptional terahertz transparency and stability above dome A, Antarctica, Publ. Astron. Soc. Pac. (PASP) 122, 490 (2010)

    Google Scholar 

  5. D.P. Marrone, R. Blundell, E. Tong, S.N. Paine, D. Loudkov, J.H. Kawamura, D. Lühr, C. Barrientos, in Proc. 16th International Symposium on Space Terahertz Technology (2005), Observations in the 1.3 and 1.5 THz atmospheric windows with the Receiver Lab Telescope, pp. 64–67

    Google Scholar 

  6. F.C.D. Lucia, Science and technology in the submillimeter region, Opt. Photon. News 14, 45 (2003)

    Google Scholar 

  7. A. Crocker, H.A. Gebbie, M.F. Kimmitt, L.E.S. Mathias, Stimulated emission in the far infra-red, Nature 201, 250 (1964)

    Google Scholar 

  8. J.C. Bose, On a self-recovering coherer and the study of the cohering action of different metals, Proc. Roy. Soc. 65, 166 (1899)

    Google Scholar 

  9. H. Rubens, B.W. Snow, On the refraction of rays of great wavelength in rock salt, sylvine, and fluorite, Phil. Mag. 35, 35 (1893)

    Google Scholar 

  10. E.F. Nichols, A method for energy measurements in the infrared spectrum and the properties of the ordinary ray in quartz for waves of great wavelength, Phys. Rev. 4, 297 (1897)

    Google Scholar 

  11. H. Rubens, E.F. Nichols, Heat rays of great wave length, Phys. Rev. 4, 314 (1897)

    Google Scholar 

  12. H. Rubens, K. Kurlbaum, Über die Emission langwelliger Wärmestrahlen durch den schwarzen Körper bei verschiedenen Temperaturen, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin II, 929 (1900)

    Google Scholar 

  13. M. Planck, Gedächtnisrede auf Heinrich Rubens, Sitzungsberichte der Preussischen Akademie der Wissenschaften, pp. CVIII–CXII (1923)

    Google Scholar 

  14. H. Rubens, R.W. Wood, XXVII. Focal isolation of long heat-waves, Phil. Mag. 21, 249 (1911)

    Google Scholar 

  15. R.W. Wood, The echelette grating for the infrared, Phil. Mag. 20, 770 (1910)

    Google Scholar 

  16. L. Rayleigh, On the manufacture and theory of diffraction gratings, Phil. Mag. 47(4), 193 (1874)

    Google Scholar 

  17. E. Hagen, H. Rubens, On some relations between the optical and the electrical qualities of metals, Phil. Mag. 7, 157 (1904)

    Google Scholar 

  18. H. Rubens, Gittermessungen im langwelligen Spektrum, Sitzungsberichte der Preussischen Akademie der Wissenschaften, 8–27 (1921)

    Google Scholar 

  19. E.F. Nichols, J.D. Tear, Joining the infra-red and electric-wave spectra, Astrophys. J. 61, 17 (1925)

    Google Scholar 

  20. A.G. Arkadiewa, Short electromagnetic waves of wave-length up to 92 μ, Nature 113, 640 (1924)

    Google Scholar 

  21. R.M. Badger, Absolute intensities in the hydrogen-chloride rotation spectrum, Proc. Natl. Acad. Sci. USA 13(6), 408 (1927)

    Google Scholar 

  22. C.H. Cartwright, Black bodies in the extreme infra-red, Phys. Rev. 35, 415 (1930)

    Google Scholar 

  23. C.H. Cartwright, Radiation thermopiles for use at liquid-air temperatures, Rev. Sci. Instr. 4, 382 (1933)

    Google Scholar 

  24. H.M. Randall, J. Strong, A self recording spectrometer, Rev. Sci. Instrum. 2(10), 585 (1931)

    Google Scholar 

  25. J. Strong, S.C. Woo, Far infrared spectra of gases, Phys. Rev. 42(2), 267 (1932)

    Google Scholar 

  26. J. Strong, G.A. Vanasse, Interferometric spectroscopy in the far infrared, J. Opt. Soc. Am. 49, 844 (1959)

    Google Scholar 

  27. A.H. Pfund, The electric Welsbach lamp, J. Opt. Soc. Am. 26, 439 (1936)

    Google Scholar 

  28. V. Cleeton, N.H. Williams, Electromagnetic waves of 1.1 cm wave-length and the absorption spectrum of ammonia, Phys. Rev. 45, 234 (1934)

    Google Scholar 

  29. E.K. Plyler, Prism spectrometry from 24 to 37 microns., J. Chem. Phys. 15, 885 (1947)

    Google Scholar 

  30. E.K. Plyler, F.P. Phelps, Growth and infrared transmission of cesium iodide crystals, J. Opt. Soc. Am. 42, 432_1 (1952)

    Google Scholar 

  31. E.K. Plyler, N. Acquista, Infrared spectrometry with a cesium iodide prism, J. Opt. Soc. Am. 43, 212_1 (1953)

    Google Scholar 

  32. M.J.E. Golay, A pneumatic infra-red detector, Rev. Sci. Instr. 18, 347 (1947)

    Google Scholar 

  33. H.A. Zahl, M.J.E. Golay, Pneumatic heat detector, Rev. Sci. Instr. 17, 511 (1946)

    Google Scholar 

  34. D.H. Andrews, W.F. Bruksch, W.T. Zeigler, E.R. Blanchard, Attenuated superconductors I. For measuring infra-red radiation, Rev. Sci. Instrum. 13, 281 (1942)

    Google Scholar 

  35. D.H. Andrews, R.M. Milton, W. DeSorbo, A fast superconducting bolometer, J. Opt. Soc. Am. 36(9), 518 (1946)

    Google Scholar 

  36. H.M. Randall, D.M. Dennison, N. Ginsburg, L.R. Weber, The far infrared spectrum of water vapor, Phys. Rev. 52, 160 (1937)

    Google Scholar 

  37. F.A. Firestone, A periodic radiometer for eliminating drifts, Rev. Sci. Instrum. 3, 163 (1932)

    Google Scholar 

  38. R. Beringer, The absorption of one-half centimeter electromagnetic waves in oxygen, Phys. Rev. 70, 53 (1946)

    Google Scholar 

  39. W. Gordy, Early events and some later developments in microwave spectroscopy, J. Mol. Struct. 97, 17 (1983)

    Google Scholar 

  40. J.H.N. Loubser, C.H. Townes, Spectroscopy between 1.5 and 2 mm wave-length using magnetron harmonics, Phys. Rev. 76, 178 (1949)

    Google Scholar 

  41. J.A. Klein, J.H.N. Loubser, A.H. Nethercot, C.H. Townes, Magnetron harmonics at millimeter wavelengths, Rev. Sci. Instrum. 23, 78 (1952)

    Google Scholar 

  42. C.A. Burrus, W. Gordy, Submillimeter wave spectroscopy, Phys. Rev. 93, 897 (1954)

    Google Scholar 

  43. A. Hadni, A short history of 50 years of research in the far infrared: 1952-2002, Int. J. Infrared Millimeter Waves 24(2), 91 (2003)

    Google Scholar 

  44. A.A. Michelson, S.W. Stratton, A new harmonic analyzer, Am J. Sci. s4–5, 1 (1898)

    Google Scholar 

  45. M.J.E. Golay, Multi-slit spectrometry, J. Opt. Soc. Am. 39, 437 (1949)

    Google Scholar 

  46. P. Fellgett, On numerical Fourier transformation, with special reference to Lipson-Beevers strips, J. Sci. Instrum. 35, 257 (1958)

    Google Scholar 

  47. P. Jacquinot, How the search for a throughput advantage led to Fourier transform spectroscopy, Infrared Phys. 24(2–3), 99 (1984)

    Google Scholar 

  48. J. Strong, Fourier transform spectroscopy reminiscences, Infrared Phys. 24(2-3), 103 (1984)

    Google Scholar 

  49. P.B. Fellgett, Three concepts make a million points, Infrared Phys. 24(2-3), 95 (1984)

    Google Scholar 

  50. H.A. Gebbie, Fourier transform spectroscopy–Recollections of the period 1955–1960, Infrared Phys. 24(2-3), 105 (1984)

    Google Scholar 

  51. P. Connes, Early history of Fourier transform Spectroscopy, Infrared Phys. 24, 69 (1984)

    Google Scholar 

  52. H. Rubens, H. Hollnagel, Measurements in the extreme infra-red spectrum, Phil. Mag. 19, 761 (1910)

    Google Scholar 

  53. W.S. Boyle, K.F. Rogers, Performance characteristics of a new low-temperature bolometer, J. Opt. Soc. Am. 49, 66 (1959)

    Google Scholar 

  54. S.J. Fray, J.F.C. Oliver, Photoconductive detector of radiation of wavelength greater than 50 μ, J. Sci. Instr. 36, 195 (1959)

    Google Scholar 

  55. P. Guenard, O. Doehler, B. Epsztein, R. Warnecke, New UHF tubes with wide electronic tuning. range, C. R. Acad. Sci. (Paris) 235, 235 (1952)

    Google Scholar 

  56. R. Kompfner, N.T. Williams, Backward-wave tubes, Proc. IRE 41, 1602 (1953)

    Google Scholar 

  57. E. Burstein, G.S. Picus, H.A. Gebbie, Cyclotron resonance at infrared frequencies in InSb at room temperature, Phys. Rev. 103, 825 (1956)

    Google Scholar 

  58. W.M. Sinton, Observation of solar and lunar radiation at 1.5 millimeters, J. Opt. Soc. Am. 45, 975 (1955)

    Google Scholar 

  59. P.L. Richards, M. Tinkham, Far infrared energy gap measurements in bulk superconducting In, Sn, Hg, Ta, V, Pb and Nb, Phys. Rev. 119, 575 (1960)

    Google Scholar 

  60. M.F. Kimmitt, A.C. Prior, V. Roberts, in Plasma Diagnostic Techniques, vol. 21, ed. by R.H. Huddlestone, S.L. Leonard (Academic Press, New York, 1965), chap. 9 - Far-infrared techniques, pp. 399–430

    Google Scholar 

  61. R.Q. Twiss, Radiation transfer and the possibility of negative absorption in radio astronomy, Austral. J. Phys. 11, 564 (1958)

    Google Scholar 

  62. A.V. Gaponov, Interaction between electron fluxes and electromagnetic waves in waveguides, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 2, 450 (1959)

    Google Scholar 

  63. R.H. Pantell, The design and characteristics of a megawatt space-harmonic traveling-wave tube, Proc. IRE 48–53, 1146 (1959)

    Google Scholar 

  64. Y. Ta, Effects des radiations sur les cristaux pyro electriques, Compt. Rend. 207, 1042 (1938)

    Google Scholar 

  65. E.H. Putley, Impurity photoconductivity in n-type InSb, Proc. Phys. Soc. 76, 802 (1960)

    Google Scholar 

  66. F.J. Low, Low temperature germanium bolometer, J. Opt. Soc. Am. 51, 1300 (1961)

    Google Scholar 

  67. M.A.C.S. Brown, M. Kimmitt, Far infrared resonant photoconductivity in indium antimonide, Infrared Phys. 5, 93 (1965)

    Google Scholar 

  68. W.J. Moore, H. Shenker, A high-detectivity gallium-doped germanium detector for the 40–120μ region, Infrared Phys. 5, 99 (1965)

    Google Scholar 

  69. A.G. Kazanskii, P.L. Richards, E.E. Haller, Far-infrared photoconductivity of uniaxially stressed germanium, Appl. Phys. Lett. 31, 496 (1977)

    Google Scholar 

  70. N.S. Nishioka, P.L. Richards, D. Woody, Composite bolometers for submillimeter wavelengths, Appl. Opt. 17, 1562 (1978)

    Google Scholar 

  71. C.C. Grimes, P.L. Richards, S. Shapiro, Josephson-effect far-infrared detector, J. Appl. Phys. 39, 3905 (1968)

    Google Scholar 

  72. D.T. Young, J.C. Irvin, Millimeter frequency conversion using Au-n-type GaAs Schottky barrier epitaxial diodes with a novel contacting technique, Proc. IEEE 53, 2130 (1965)

    Google Scholar 

  73. H.A. Gebbie, N.W.B. Stone, F.D. Findlay, A stimulated emission source at 0.34 millimetre wave-length, Nature 202, 685 (1964)

    Google Scholar 

  74. J.E. Chamberlain, J.E. Gibbs, H.A. Gebbie, Refractometry in the far infra-red using a two-beam interferometer, Nature 198, 874 (1963)

    Google Scholar 

  75. E.E. Bell, Measurement of spectral transmittance and reflectance with a far infrared michelson interferometer, Japan J. Appl. Phys. 4, 412 (1964). Supplement I

    Google Scholar 

  76. D.H. Martin, E. Puplett, Polarised interferometric spectrometry for the millimeter and submillimetre spectrum, Infrared Phys. 10, 105 (1970)

    Google Scholar 

  77. J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comput. 19, 297 (1965)

    Google Scholar 

  78. R. Ulrich, Far-infrared properties of metallic mesh and its complementary structure, Infrared Phys. 7, 37 (1967)

    Google Scholar 

  79. G.W. Chantry, H.M. Evans, J.W. Fleming, H.A. Gebbie, TPX, a new material for optical components in the far infra-red spectral region, Infrared Phys. 9, 31 (1969)

    Google Scholar 

  80. A.M. Nicolson, Broad-band microwave transmission characteristics from a single measurement of the transient response, IEEE Trans. Instrum. Meas. 17, 395 (1968)

    Google Scholar 

  81. T.Y. Chang, T.J. Bridges, Laser action at 452, 496 and 541 μm in optically pumped CH3F, Opt. Comm. 1, 423 (1970)

    Google Scholar 

  82. R.W. Wilson, K.B. Jefferts, A.A. Penzias, Carbon monoxide in the Orion nebula, Astrophys. J. 161, L43 (1970)

    Google Scholar 

  83. T.G. Phillips, P.J. Huggins, G. Neugebauer, M.W. Werner, Detection of submillimeter (870 μm) CO emission from the Orion molecular cloud, Astrophys. J. 217, L161 (1977)

    Google Scholar 

  84. D.H. Barker, D.T. Hodges, T.S. Hartwick, Far infrared imagery, Proc. SPIE 67, 27 (1975)

    Google Scholar 

  85. K.H. Yang, P.L. Richards, Y.R. Shen, Generation of far-infrared radiation by picosecond light pulses in LiNbO3, Appl. Phys. Lett. 19, 320 (1971)

    Google Scholar 

  86. T. Yajima, N. Takeuchi, Far-infrared difference-frequency generation by picosecond laser pulses, Jpn. J. Appl. Phys. 9, 1361 (1970)

    Google Scholar 

  87. W.M. Kelly, G.T. Wrixon, Infrared and Millimeter Waves, (Academic Press, New York, London, Toronto, Sydney, San Francisco, 1980), Submillimeter Techniques, vol. 3, chap. 2 – Optimization of Schottky-Barrier Diodes for Low-Noise, Low-Conversion Loss Operation at Near-Millimeter Wavelengths, pp. 75–110

    Google Scholar 

  88. E.E. Haller, M.R. Hueschen, P.L. Richards, Ge:Ga photoconductors in low infrared backgrounds, Appl. Phys. Lett. 34, 495 (1979)

    Google Scholar 

  89. G.J. Dolan, T.G. Phillips, D.P. Woody, Low-noise 115-GHz mixing in superconducting oxide-barrier tunnel junctions, Appl. Phys. Lett. 34, 347 (1979)

    Google Scholar 

  90. P.L. Richards, T.M. Shen, R.E. Harris, F. Lloyd, Quasiparticle heterodyne mixing in SIS tunnel junctions, Appl. Phys. Lett. 34, 345 (1979)

    Google Scholar 

  91. B. Carli, F. Mencaraglia, A. Bonetti, Submillimeter high-resolution FT spectrometer for atmospheric studies, Appl. Opt. 23, 2594 (1984)

    Google Scholar 

  92. D.M. Watson, J.W.V. Storey, Far infrared fine structure lines in the interstellar medium, Int. J. Infrared Millimeter Waves 1(4), 609 (1980)

    Google Scholar 

  93. H.R. Fetterman, G.A. Koepf, P.F. Goldsmith, B.J. Clifton, D. Buhl, N.R. Erickson, D.D. Peck, N. Mcavoy, P.E. Tannenwald, Submillimeter heterodyne detection of interstellar carbon monoxide at 434 micrometers, Science 211(4482), 580 (1981)

    Google Scholar 

  94. H. Roeser, R. Wattenbach, E. Durwen, G. Schultz, A high resolution heterodyne spectrometer from 100 μm to 1000 μm and the detection of CO ({ J} = 7 − 6), CO ({ J} = 6 − 5) and (13CO) ({ J} = 3 − 2), Astron. Astrophys. 165, 287 (1986)

    Google Scholar 

  95. J. Zmuidzinas, A.L. Betz, D.M. Goldhaber, Observations of neutral atomic carbon at 809 GHz, Astrophys. J. Lett. 307, L75 (1986)

    Google Scholar 

  96. M.D. Petroff, M.G. Stapelbroek, Blocked impurity band detectors, U.S. Patent 4,568,960, filed 1980 (1986)

    Google Scholar 

  97. S. Komiyama, Far-infrared emission from population-inverted hot-carrier system in p-Ge, Phys. Rev. Lett. 48, 271 (1982)

    Google Scholar 

  98. A.A. Andronov, I. Zverev, V.A. Kozlov, Y.N. Nozdrin, S.A. Pavlov, V.N. Shastin, Stimulated emission in the long-wavelength IR region from hot holes in Ge in crossed electric and magnetic fields, Pis’ma Zh. Eksp. Teor. Fiz. 40, 69 (1984)

    Google Scholar 

  99. E. Bründermann, D.R. Chamberlin, E.E. Haller, High duty cycle and continuous terahertz emission from germanium, Appl. Phys. Lett. 76(21), 2991 (2000)

    Google Scholar 

  100. E. Bründermann, H.P. Röser, First operation of a far-infrared p-germanium laser in a standard closed-cycle machine at 15 K, Infrared Phys. Technol. 38(4), 201 (1997)

    Google Scholar 

  101. L.R. Elias, J. Hu, G. Ramian, The UCSB electrostatic accelerator free electron laser: First operation, Nucl. Instr. Meth. A237, 203 (1984)

    Google Scholar 

  102. W.D. Duncan, G.P. Williams, Infrared synchrotron radiation from electron storage rings, Appl. Opt. 22, 2914 (1983)

    Google Scholar 

  103. M. Abo-Bakr, J. Feikes, K. Holldack, G. Wüstefeld, H.-W. Hübers, Steady-state far-infrared coherent synchrotron radiation detected at BESSY II, Phys. Rev. Lett. 88, 254801 (2002)

    Google Scholar 

  104. D.H. Auston, K.P. Cheung, P.R. Smith, Picosecond photoconducting Hertzian dipoles, Appl. Phys. Lett. 45, 284 (1984)

    Google Scholar 

  105. E.M. Gershenzon, M.E. Gershenzon, G.N. Goltsman, A.M. Lyulkin, A.D. Semenov, A.V. Sergeev, On the limiting characteristics of high-speed superconducting bolometers, Sov. Phys. Tech. Phys. 34, 195 (1989)

    Google Scholar 

  106. T.S. Hartwick, D.H. Barker, D.T. Hodges, B.F. Foote, Far infrared imagery, Appl. Opt. 67, 1919 (1976)

    Google Scholar 

  107. B.B. Hu, M.C. Nuss, Imaging with terahertz waves, Opt. Lett. 20(16), 1716 (1995)

    Google Scholar 

  108. R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, F. Rossi, Terahertz semiconductor-heterostructure laser, Nature 417, 156 (2002)

    Google Scholar 

  109. D. Abbott, X.C. Zhang (eds.), Special issue on T-ray imaging, sensing, and retection, vol. 95 (Proc. IEEE, 2007)

    Google Scholar 

  110. K. Fukunaga, Y. Ogawa, S. Hayashi, I. Hosako, Terahertz spectroscopy for art conservation, IEICE Electron. Express 4(8), 258 (2007)

    Google Scholar 

  111. E.P. Ippen, C.V. Shank, A. Dienes, Passive mode locking of the cw dye laser, Appl. Phys. Lett. 21(8), 348 (1972)

    Google Scholar 

  112. P.F. Moulton, Spectroscopic and laser characteristics of Ti:Al2O3, J. Opt. Soc. Am. B 3(1), 125 (1986)

    Google Scholar 

  113. A.S. Müller, I. Birkel, S. Casalbuoni, B. Gasharova, E. Huttel, Y.L. Mathis, D. Moss, N. Smale, P. Wesolowski, E. Bründermann, T. Bückle, M. Klein, in Proc. European Particle Accelerator Conference (European Particle Accelerator Conference, 2008), Characterizing THz coherent synchrotron radiation at the ANKA storage ring, WEPC046, pp. 2091–2093

    Google Scholar 

  114. V. Blackmore, G. Doucas, C. Perry, B. Ottewell, M.F. Kimmitt, M. Woods, S. Molloy, R. Arnold, First measurements of the longitudinal bunch profile of a 28.5 GeV beam using coherent Smith-Purcell radiation, Phys. Rev. ST Accel. Beams 12(3), 032803 (2009)

    Google Scholar 

  115. Y. Neo, H. Shimawaki, T. Matsumoto, H. Mimura, Smith-Purcell radiation from ultraviolet to infrared using a Si field emitter, J. Vac. Sci. Technol. B 24(2), 924 (2006)

    Google Scholar 

  116. P.F. Goldsmith, Quasioptical systems-Gaussian beam quasioptical propagation and applications (IEEE Press, New York, 1998)

    Google Scholar 

  117. A.E. Siegman, Lasers (University Science Books, Mill Valley, California, 1986)

    Google Scholar 

  118. K. Halbach, Matrix representation of gaussian optics, Am. J. Phys. 32(2), 90 (1964)

    Google Scholar 

  119. A. Yariv, Optical Electronics, 4th int. edn. (Harcourt Brace Jovanovich College Publishers, Orlando, 1991)

    Google Scholar 

  120. J.D. Kraus, Radio Astronomy, 2nd edn. (Cygnus-Quasar Books, Powell, 1986)

    Google Scholar 

  121. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ, Sov. Phys. Usp. 10, 509 (1968), translated from V.G. Veselago, Usp. Fiz. Nauk 92, 517 (1967)

    Google Scholar 

  122. K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics, J. Chem. Phys. 9, 341 (1941)

    Google Scholar 

  123. D.W. Davidson, R.H. Cole, Dielectric relaxation in glycerol, propylene glycol and n-propanol, J. Chem. Phys. 19, 1484 (1951)

    Google Scholar 

  124. H. Zhang, P. Guo, P. Chen, S. Chang, J. Yuan, Liquid-crystal-filled photonic crystal for terahertz switch and filter, J. Opt. Soc. Am. B 26, 101 (2009)

    Google Scholar 

  125. R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, M. Koch, THz spectroscopy of liquid crystals from the CB family, J. Infrared Milli. Terahz. Waves 30(11), 1139 (2009)

    Google Scholar 

  126. C.F. Hsieh, R.P. Pan, T.T. Tang, H.L. Chen, C.L. Pan, Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate, Opt. Lett. 31(8), 1112 (2006)

    Google Scholar 

  127. C.Y. Chen, C.F. Hsieh, Y.F. Lin, R.P. Pan, C.L. Pan, Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter, Opt. Express 12(12), 2625 (2004)

    Google Scholar 

  128. T.R. Tsai, C.Y. Chen, R.P. Pan, C.L. Pan, X.C. Zhang, Electrically controlled room temperature terahertz phase shifter with liquid crystal, IEEE Microw. Wireless Compon. Lett. 14, 2 (2004)

    Google Scholar 

  129. C.Y. Chen, C.L. Pan, C.F. Hsieh, Y.F. Lin, R.P. Pan, Liquid-crystal-based terahertz tunable Lyot filter, Appl. Phys. Lett. 88, 101107 (2006)

    Google Scholar 

  130. T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Koch, Audio signal transmission over THz communication channel using semiconductor modulator, Electron. Lett. 40, 124 (2004)

    Google Scholar 

  131. J.-ichi Nishizawa, T. Yamada, T. Sasaki, T. Tanabe, T. Wadayama, T. Tanno, K. Suto, Terahertz dichroism of MBBA liquid crystal on rubbed substrate, Appl. Surf. Sci. 252, 4226 (2006)

    Google Scholar 

  132. G.G. Stokes, On the composition and resolution of streams of polarized light from different sources, Trans. Cambridge Phil. Soc. 9, 399 (1852)

    Google Scholar 

  133. A.J. Gatesman, R.H. Giles, J. Waldman, High-precision reflectometer for submillimeter wavelengths, J. Opt. Soc. Am. B 12, 212 (1995)

    Google Scholar 

  134. J. Houghton, J.D. Smith, Infra-red Physics (Clarendon Press, United Kingdom, 1966)

    Google Scholar 

  135. M. Naftaly, R.E. Miles, in T-ray imaging, sensing, and retection, ed. by D. Abbott, X.C. Zhang (2007), Terahertz time-domain spectroscopy for material characterization, Proc. IEEE 95, pp. 1658–1665

    Google Scholar 

  136. G.W. Chantry, J.W. Fleming, G.W. F. Pardoe, W. Reddish, H.A. Willis, Absorption spectra of polypropylene in the millimeter and submillimeter regions, Infrared Phys. 11, 109 (1971)

    Google Scholar 

  137. J.R. Birch, The far-infrared optical constants of polypropylene, PTFE and polystyrene, Infrared Phys. 33, 33 (1992)

    Google Scholar 

  138. D. Larie, I. Booth, M.L.W. Thewalt, B.P. Clayman, Use of polypropylene film for infrared cryostat windows, Appl. Opt. 25, 171 (1986)

    Google Scholar 

  139. A. Podzorov, G. Gallot, Low-loss polymers for terahertz applications, Appl. Opt. 47, 3254 (2008)

    Google Scholar 

  140. E.V. Loewenstein, D. R.Smith, Optical constants of far-infrared materials. 1: Analysis of channeled spectra and application to Mylar, Appl. Opt. 10, 577 (1971)

    Google Scholar 

  141. H.-W. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Goltsman, B. Voronov, E. Gershenzon, Parylene anti-reflection coating of a quasi-optical hot-electron bolometric mixer at terahertz frequencies, Infrared Phys. Technol. 42, 41 (2001)

    Google Scholar 

  142. J.R. Birch, F.P. Kong, Birefringence and dichroism in fluorogold at near-millimetre wavelengths, Infrared Phys. 26, 131 (1986)

    Google Scholar 

  143. A. Blanco, S. Fonti, M. Bancarella, V.D. Cosimo, Polarization properties of some materials at near millimeter wavelenths, Int. J. Infrared Millimet. Waves 4, 751 (1983)

    Google Scholar 

  144. S. Sato, S. Hayakawa, T. Matsumoto, H. Matsuo, H. Murakami, K. Sakai, A.E. Lange, P.L. Richards, Submillimeter wave low pass filters made of glass beads, Appl. Opt. 28, 4478 (1989)

    Google Scholar 

  145. D.J. Benford, M.C. Gaidis, J.W. Kooi, Optical properties of Zitex in the infrared to submillimeter, Appl. Opt. 42, 5118 (2003)

    Google Scholar 

  146. E.V. Loewenstein, D. R.Smith, R.L. Morgan, Optical constants of far infrared materials 2: Crystalline solids, Appl. Opt. 12, 398 (1973)

    Google Scholar 

  147. J.R. Birch, C.C. Bradley, M.F. Kimmitt, Absorption and refraction in germanium at 293 ∘ K in the range 12–50 cm − 1, Infrared Phys. 14, 189 (1974)

    Google Scholar 

  148. T.S. Moss, Optical properties of semiconductors, a semiconductor monograph (Butterworths Scientific Publications and Academic Press, London and New York, 1959)

    Google Scholar 

  149. D. Grischkowsky, S. Keiding, M. van Exter, C. Fattinger, Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors, J. Opt. Soc. Am. B 7, 2006 (1990)

    Google Scholar 

  150. K. Kawase, N. Hiromoto, Terahertz-wave antireflection coating on Ge and GaAs with fused quartz, Appl. Opt. 37(10), 1862 (1998)

    Google Scholar 

  151. I. Hosako, Antireflection coating formed by plasma-enhanced chemical-vapor deposition for terahertz-frequency germanium optics, Appl. Opt. 42(19), 4045 (2003)

    Google Scholar 

  152. A. Hadni, J. Claudel, X. Gerbaux, G. Morlot, J.M. Munier, Sur le comportement different des cristaux et des verres dans l’absorption de l’infrarouge lointain (40-1500μ) a la temperature de l’helium liquide, Appl. Opt. 4, 487 (1965)

    Google Scholar 

  153. J.W. Lamb, Miscellaneous data on materials for millimeter and submillimetre optics, Int. J. Infrared Millimet. Waves 17, 1997 (1996)

    Google Scholar 

  154. J.R. Birch, G.J. Simonis, M.N. Afsar, R.N. Clarke, J.M. Dutta, H.M. Frost, X. Gerbaux, A. Hadni, W.F. Hall, R. Heidinger, W.W. Ho, C.R. Jones, F. Köninger, R.L. Moore, H. Matsuo, T. Nakano, W. Richter, K. Sakai, M.R. Stead, U. Stumper, R.S. Vigil, T.N. Wells, An intercomparison of measurement techniques for the determination of the dielectric properties of solids at near millimeter wavelengths, IEEE Trans. Microw. Theory Tech. 42, 956 (1994)

    Google Scholar 

  155. D.E. McCarthy, Black polyethylene as a far-infrared filter, J. Opt. Soc. Am. 57(5), 699_1 (1967)

    Google Scholar 

  156. Y. Yamada, A. Mitsuishi, H. Yoshinaga, Transmission filters in the far-infrared region, J. Opt. Soc. Am. 52(1), 17 (1962)

    Google Scholar 

  157. T.R. Manley, D.A. Williams, Scattering filters in the far infrared, Spectrochim. Acta 21, 737 (1965)

    Google Scholar 

  158. C. Christiansen, Untersuchungen über die optischen Eigenschaften von fein vertheilten Körpern, Ann. Phys. Chem. 23, 298 (1884)

    Google Scholar 

  159. K.D. Möller, R.V. McKnight, Measurements on transmission-filter gratings in the far infrared, J. Opt. Soc. Am. 55, 1075 (1965)

    Google Scholar 

  160. M.F. Kimmitt, Far-infrared techniques (Pion, 1970)

    Google Scholar 

  161. K. Sakai, T. Yoshida, Single mesh narrow bandpass filters from the infrared to the submillimeter region, Infrared Phys. 18, 137 (1978)

    Google Scholar 

  162. R. Ulrich, Interference filters for the far infrared, Appl. Opt. 7, 1987 (1968)

    Google Scholar 

  163. D.W. Porterfield, J.L. Hesler, R. Densing, E.R. Mueller, T.W. Crowe, R.M. Weikle, Resonant metal-mesh bandpass filters for the far infrared, Appl. Opt. 33, 6046 (1994)

    Google Scholar 

  164. F. Keilmann, Infrared high-pass filter with high contrast, Int. J. Infrared Millimeter Waves 2, 259 (1981)

    Google Scholar 

  165. T. Timusk, P.L. Richards, Near millimeter wave bandpass filters, Appl. Opt. 20, 1355 (1981)

    Google Scholar 

  166. P.G. Huggard, G. Schneider, W. Prettl, W. Blau, A simple method of producing far-infrared high-pass filters, Meas. Sci. Technol. 2, 203 (1991)

    Google Scholar 

  167. P.G. Huggard, M. Meyringer, A. Schilz, K. Goller, W. Prettl, Far-infrared bandpass filters from perforated metal screens, Appl. Opt. 33, 39 (1994)

    Google Scholar 

  168. J. Zmuidzinas, N.G. Ugras, D. Miller, M.C. Gaidis, H.G. LeDuc, Low noise slot antenna SIS mixers, IEEE Trans. Appl. Superconductivity 5, 3053 (1995)

    Google Scholar 

  169. J. Lau, J. Fowler, T. Marriage, L. Page, J. Leong, E. Wishnow, R. Henry, E. Wollack, M. Halpern, D. Marsden, G. Marsden, Millimeter-wave antireflection coating for cryogenic silicon lenses, Appl. Opt. 45, 3746 (2006)

    Google Scholar 

  170. S. Cherednichenko, V. Drakinskiy, T. Berg, P. Khosropanah, E. Kollberg, Hot-electron bolometer terahertz mixers for the Herschel Space Observatory, Rev. Sci. Instrum. 79, 034501 (2008)

    Google Scholar 

  171. C.R. Englert, B. Schimpf, M. Birk, F. Schreier, M. Krocka, R. Nitsche, R. Titz, M. Summers, The 2.5 THz heterodyne spectrometer THOMAS: measurement of OH in the middle atmosphere and comparison with photochemical model results, J. Geophys. Res. D 105, 22211 (2000)

    Google Scholar 

  172. J. Xu, J.M. Hensley, D.B. Fenner, R.P. Green, L. Mahler, A.Tredicucci, M.G. Allen, F. Beltram, H.E. Beere, D.A. Ritchie, Tunable terahertz quantum cascade lasers with an external cavity resonator, Appl. Phys. Lett. 91, 121104 (2007)

    Google Scholar 

  173. S.B. Cohn, in Antenna Engineering Handbook (McGraw-Hill, New York, 1961), chap. 14 - Lens type radiators

    Google Scholar 

  174. C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E.B. Kley, A. Tünnermann, Broadband antireflective structures applied to high resistive float zone silicon in the THz spectral range, Opt. Express 17(5), 3063 (2009)

    Google Scholar 

  175. J. Ruze, Antenna tolerance theory: A review, Proc. IEEE 54, 633 (1966)

    Google Scholar 

  176. I. Anderson, The effect of small phase errors upon transmission between confocal apertures, Bell Syst. Tech. J. 54, 783 (1975)

    Google Scholar 

  177. H. Davies, The reflection of electromagnetic waves from a rough surface, Proc. Inst. Electr. Eng. 101, 209 (1954)

    Google Scholar 

  178. M. Ortolani, J.S. Lee, U. Schade, H.-W. Hübers, Surface roughness effects on the terahertz reflectance of pure explosive materials, Appl. Phys. Lett. 93, 081906 (2008)

    Google Scholar 

  179. J.A. Murphy, Distortion of a simple Gaussian beam on reflection from off-axis ellipsoidal mirrors, Int. J. Infrared Millimeter Waves 8, 1165 (1987)

    Google Scholar 

  180. J.A. Murphy, S. Withington, Perturbation analysis of Gaussian-beam-mode scattering at off-axis ellipsoidal mirrors, Infrared Phys. Technol. 37, 205 (1996)

    Google Scholar 

  181. R.C. Ohlmann, P.L. Richards, M. Tinkham, Far-infrared transmission through metal light pipes, J. Opt. Soc. Am. 48, 531 (1958)

    Google Scholar 

  182. R.E. Harris, R.L. Cappelletti, D.M. Ginsberg, Far infrared transmission through metal light pipes with low thermal conductance, Appl. Opt. 5(6), 1083 (1966)

    Google Scholar 

  183. E. Fu, Transmission of submillimeter waves through metal light pipes, J. Opt. Soc. Am. B 13, 702 (1996)

    Google Scholar 

  184. E.V. Loewenstein, D.C. Newell, Ray traces through hollow metal light-pipe elements, J. Opt. Soc. Am. 59, 407 (1969)

    Google Scholar 

  185. D.G. Hawthorn, T. Timusk, Transmittance of skew rays through metal light pipes, Appl. Opt. 38(13), 2787 (1999)

    Google Scholar 

  186. R. Winston, Light collection within the framework of geometrical optics, J. Opt. Soc. Am. 60, 245 (1970)

    Google Scholar 

  187. M. Born, E. Wolf, Principles of optics (Pergamon Press Ltd., Oxford, 1965)

    Google Scholar 

  188. D.A. Harper, R.H. Hildebrand, R. Stiening, R. Winston, Heat trap: an optimized far infrared field optics system, Appl. Opt. 15, 53 (1976)

    Google Scholar 

  189. E. Bründermann, M. Havenith, G. Scalari, M. Giovannini, J. Faist, J. Kunsch, L. Mechold, M. Abraham, Turn-key, compact high temperature terahertz quantum cascade lasers: imaging and room temperature detection, Opt. Express 14(5), 1829 (2006)

    Google Scholar 

  190. J. Keene, R.H. Hildebrand, S.E. Whitcomb, R. Winston, Compact infrared heat trap field optics, Appl. Opt. 17, 1107 (1978)

    Google Scholar 

  191. D.E. Williamson, Cone channel condenser optics, J. Opt. Soc. Am. 42, 712 (1952)

    Google Scholar 

  192. W. Witte, Cone channel optics, Infrared Phys. 5, 179 (1965)

    Google Scholar 

  193. H. Lamb, On the reflection and transmission of electric waves by a metallic grating, Proc. Math. Soc. XIX, 523 (1898)

    Google Scholar 

  194. J.P. Casey, E.A. Lewis, Interferometer action of a parallel pair of wire gratings, J. Opt. Soc. Am. 42, 971 (1952)

    Google Scholar 

  195. K.F. Renk, L. Genzel, Interference filters and Fabry-Perot interferometers for the far infrared, Appl. Opt. 1, 643 (1962)

    Google Scholar 

  196. J.P. Auton, Infrared transmission polarizers by photolithography, Appl. Opt. 6, 1023 (1967)

    Google Scholar 

  197. A. Mitsuishi, Y. Yamada, S. Fujita, H. Yoshinaga, Polarizer for the far-infrared region, J. Opt. Soc. Am. 50, 433 (1960)

    Google Scholar 

  198. C.C. Homes, G.L. Carr, R.P.S.M. Lobo, J.D. LaVeigne, D.B. Tanner, Si beam splitter for far-infrared and terahertz spectroscopy, Appl. Opt. 46, 7884 (2007)

    Google Scholar 

  199. N.L. Rowell, E.A. Wang, Bilayer free-standing beam splitter for Fourier transform infrared spectrometry, Appl. Opt. 35, 2927 (1996)

    Google Scholar 

  200. J.A. Dobrolowski, W.A.Traub, New designs for far-infrared beam splitters, Appl. Opt. 35, 2934 (1996)

    Google Scholar 

  201. T.O. Klaassen, J.H. Blok, N.J. Hovenier, G. Jakob, D. Rosenthal, K.J. Wildeman, in IR Space Telescopes and Instruments, ed. by J.C. Mather (2003), Scattering of sub-millimeter radiation from rough surfaces: absorbers and diffuse reflectors for HIFI and PACS, Proc. IEEE 4850, pp. 788–796

    Google Scholar 

  202. H. Hemmati, J.C. Mather, W.L. Eichhorn, Submillimeter and millimeter wave characterization of absorbing materials, Appl. Opt. 24, 4489 (1985)

    Google Scholar 

  203. J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, C. Jensen, Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate, Nano Lett. 10, 3261 (2010)

    Google Scholar 

  204. D.B. Rutledge, D.P. Neikirk, D.P. Kasilingam, in Infrared and Millimeter Waves, K. Button (ed.) (Academic Press, New York, 1983), vol. 10, Integrated-circuit antennas, pp. 1–90

    Google Scholar 

  205. G.M. Rebeiz, Millimeter-wave and terahertz integrated circuit antennas, Proc. IEEE 80, 1748 (1992)

    Google Scholar 

  206. D.F. Filipovic, S.S. Gearhart, G.M. Rebeiz, Double-slot antennas on extended hemispherical and elliptical Si dielectric lenses, IEEE Trans. Microw. Theory Tech. 41, 1738 (1993)

    Google Scholar 

  207. T.H. Büttgenbach, An improved solution for integrated array optics in quasi-optical mm and submm receivers: the hybrid antenna, IEEE Trans. Microw. Theory Tech. 41, 1750 (1993)

    Google Scholar 

  208. J.V. Rudd, D.M. Mittleman, Influence of substrate-lens design in terahertz time-domain spectroscopy, J. Opt. Soc. Am. B 19, 319 (2002)

    Google Scholar 

  209. D.M. Pozar, Microwave engineering, 2nd edn. (John Wiley and Sons, New York, 1998)

    Google Scholar 

  210. C. Balanis, Antenna Theory (John Wiley and Sons, New York, 1982)

    Google Scholar 

  211. S.A. Ramakrishna, Physics of negative refractive index materials, Rep. Prog. Phys. 68, 449 (2005)

    Google Scholar 

  212. R. Schiwon, G.W. Schwaab, E. Bründermann, M. Havenith, FIR multilayer mirrors, Appl. Phys. Lett. 83, 4119 (2003)

    Google Scholar 

  213. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals (Princeton University Press, Princeton, 1995)

    Google Scholar 

  214. H. Kroemer, Nano-whatever: Do we really know where we are heading?, Phys. Status Solidi A 202(6), 957 (2005)

    Google Scholar 

  215. J.B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, 3966 (2000)

    Google Scholar 

  216. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ, Sov. Phys. Usp. 10, 509 (1968), translated from V.G. Veselago, Usp. Fiz. Nauk 92, 517 (1967)

    Google Scholar 

  217. A. Schuster, An Introduction to the Theory of Optics (Edward Arnold, London, 1904)

    Google Scholar 

  218. H. Lamb, On group - velocity, Proc. Math. Soc. 1, 473 (1904)

    Google Scholar 

  219. H.C. Poklington, Growth of a wave-group when the group velocity is negative, Nature 71, 607 (1905)

    Google Scholar 

  220. P. Vogel, L. Genzel, Transmission and reflection of metallic mesh in the far infrared, Infrared Phys. 4, 257 (1964)

    Google Scholar 

  221. H.T. Chen, W.J. Padilla, J.M.O. Zide, S.R. Bank, A.C. Gossard, A.J. Taylor, R.D. Averitt, Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices, Opt. Lett. 32(12), 1620 (2007)

    Google Scholar 

  222. H.T. Chen, H. Lu, A.K. Azad, R.D. Averitt, A.C. Gossard, S.A. Trugman, J.F. O’Hara, A.J. Taylor, Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays, Opt. Express 16(11), 7641 (2008)

    Google Scholar 

  223. O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, M. Rahm, Polarization-independent active metamaterial for high-frequency terahertz modulation, Opt. Express 17, 819 (2009)

    Google Scholar 

  224. J. Han, A. Lakhtakia, Semiconductor split-ring resonators for thermally tunable terahertz metamaterials, J. Mod. Opt. 56(4), 554 (2009)

    Google Scholar 

  225. J. Han, A. Lakhtakia, C.W. Qiu, Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability, Opt. Express 16(19), 14390 (2008)

    Google Scholar 

  226. J. Brown, Artificial dielectrics having refractive indices less than unity, Proc. IEEE 100(62R), 51 (1953)

    Google Scholar 

  227. L. Tonks, I. Langmuir, Oscillations in ionised gases, Phys. Rev. 33, 195 (1929)

    Google Scholar 

  228. J.D. Jackson, Classical electrodynamics, 2nd edn. (John Wiley and Sons, New York, 1975)

    Google Scholar 

  229. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett. 76, 4773 (1996)

    Google Scholar 

  230. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84, 4184 (2000)

    Google Scholar 

  231. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction, Science 292, 77 (2001)

    Google Scholar 

  232. T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, X. Zhang, Terahertz magnetic response from artificial materials, Science 303(5), 1494 (2004)

    Google Scholar 

  233. R.W. Boyd, Radiometry and the Detection of Optical Radiation (John Wiley and Sons, New York, Chichester, Brisbane, Toronto, Singapore, 1983), chap. 3 - Theory of Blackbody Radiation, pp. 28–50

    Google Scholar 

  234. E.K. Plyler, D.J.C. Yates, H.A. Gebbie, Radiant energy from sources in the far infrared, J. Opt. Soc. Am. 52, 859 (1962)

    Google Scholar 

  235. M.F. Kimmitt, K. Miller, C.L. Platt, J.E. Walsh, Infrared output from a compact high pressure arc source, Infrared Phys. Technol. 37, 471 (1996)

    Google Scholar 

  236. G.W. Chantry, in Submillimetre Spectroscopy: a guide to the theoretical and experimental physics of the far infrared, (Academic Press, London and New York, 1971), chap. 5 – Submillimeter Physics, pp. 217–210

    Google Scholar 

  237. R.J. Emery, H.A. Gebbie, An improved far infrared continuum source, Infrared Phys. 17, 231 (1977)

    Google Scholar 

  238. J.P. Kotthaus, High power output from a submillimeter cw gas laser, Appl. Opt. 7(12), 2422_1 (1968)

    Google Scholar 

  239. L.E. Sharp, A.T. Wetherell, High power pulsed HCN laser, Appl. Opt. 11(8), 1737 (1972)

    Google Scholar 

  240. Y.X. Jie, X. Gao, Y.F. Cheng, K. Yang, X.D. Tong, Multi-channel FIR HCN laser interferometer on HT-7 Tokamak, Int. J. Infrared Millimet. Waves 21, 1375 (2000)

    Google Scholar 

  241. C. Sturzenegger, H. Vetsch, F. Kneubühl, Transversely excited double-discharge HCN laser, Infrared Phys. 19, 277 (1979)

    Google Scholar 

  242. G. Dodel, On the history of far-infrared (FIR) gas lasers: Thirty-five years of research and application, Infrared Phys. Technol. 40, 127 (1999)

    Google Scholar 

  243. K.J. Button, M. Inguscio, F. Strumia, in Reviews of infrared and millimetre waves, ed. by K.J. Button, M. Inguscio, F. Strumia (Plenum Press, New York, 1984), vol. 2 - Optically pumped far infrared lasers

    Google Scholar 

  244. P. K. Cheo (ed.), Handbook of molecular gas lasers (Marcel Dekker Inc., New York, 1987)

    Google Scholar 

  245. N.G. Douglas, Millimetre and submillimetre wavelength lasers (Springer, Berlin, Heidelberg, 1989)

    Google Scholar 

  246. D.T. Hodges, A review of advances in optically pumped far-infrared lasers, Infrared Phys. 18(5-6), 375 (1978)

    Google Scholar 

  247. E.R. Mueller, R. Henschke, W.E. Robotham, L.A. Newman, L.M. Laughman, R.A. Hart, J. Kennedy, Terahertz local oscillator for the Microwave Limb Sounder on the Aura satellite, Appl. Opt. 46, 4907 (2007)

    Google Scholar 

  248. A.G. Adam, T.E. Gough, N.R. Isenor, CO2 laser stabilization using an external cavity locked to a reference HeNe laser, Rev. Sci. Instrum. 57, 6 (1986)

    Google Scholar 

  249. A.J. Cantor, P.K. Cheo, M.C. Foster, L.A. Newman, Application of submillimeter wave lasers to high voltage cable inspection, IEEE J. Quantum Electron. 17, 477 (1981)

    Google Scholar 

  250. A.J. Beaulieu, Transversely excited atmospheric pressure CO2 lasers, Appl. Phys. Lett. 16, 504 (1970)

    Google Scholar 

  251. P.R. Pearson, H.M. Lamberton, Atmospheric pressure CO2 lasers giving high output energy per unit volume, IEEE J. of Quantum Electron. 8, 145 (1972)

    Google Scholar 

  252. D.E. Evans, L.E. Sharp, B.W. James, W.A. Peebles, Far-infrared superradiant laser action in methyl fluoride, Appl. Phys. Lett. 26, 630 (1975)

    Google Scholar 

  253. R. Behn, D. Dicken, J. Hackmann, S.A. Salito, M.R. Siegrist, P.A. Krug, I. Kjelberg, B. Duval, B. Joye, A. Pochelon, Ion temperature measurement of tokamak plasmas by collective Thomson scattering of D2O laser radiation, Phys. Rev. Lett. 62, 2833 (1989)

    Google Scholar 

  254. J. Wiggins, Z. Drozdowicz, R. Temkin, Two-photon transitions in optically pumped submillimeter lasers, IEEE J. Quantum Electron. 14, 23 (1978)

    Google Scholar 

  255. A.J. Alcock, K. Leopold, M.C. Richardson, Continuously tunable high-pressure CO2 laser with uv photopreionization, Appl. Phys. Lett. 23, 562 (1973)

    Google Scholar 

  256. D.G. Biron, R.J. Temkin, B. Lax, B.G. Danly, High-intensity CO2 laser pumping of a CH3F Raman FIR laser, Opt. Lett. 4, 381 (1979)

    Google Scholar 

  257. P. Mathieu, J.R. Izatt, Continuously tunable CH3F raman far-infrared laser, Opt. Lett. 6, 369 (1981)

    Google Scholar 

  258. U.P. Schießl, J. John, P.J. McCann, in Long-wavelength Infrared Semiconductor Lasers (John Wiley and Sons, New York, 2004), chap. 4 - Lead-Chalcogenide-based Mid-Infrared Diode Lasers, pp. 145–216

    Google Scholar 

  259. H. Krömer, Proposed negative mass microwave amplifier, Phys. Rev. 109, 1856 (1958)

    Google Scholar 

  260. W. Shockley, Hot electrons in germanium and Ohm’s law, Bell Syst. Tech. J. 30, 990 (1951)

    Google Scholar 

  261. S. Komiyama, S. Kuroda, I. Hosako, Y. Akasaka, N. Iizuka, Germanium lasers in the range from far-infrared to millimetre waves, Optical & Quantum Electron. 23(2), S133 (1991)

    Google Scholar 

  262. I. Hosako, N. Hiromoto, in Proc. 7th Int. Conf. Terahertz Electronics (IEEE, 25-26 November 1999, Nara, Japan, 1999), p-type germanium sub-terahertz maser oscillation in the Voigt configuration, pp. 193–194

    Google Scholar 

  263. H. Maeda, T. Kurosawa, Hot electron population inversion in crossed electric and magnetic fields, J. Phys. Soc. Jpn. 33, 562 (1972)

    Google Scholar 

  264. A.A. Andronov, V.A. Kozlov, L.S. Mazov, V.N. Shastin, Amplification of far IR radiation in Ge on ‘hot’ hole population inversion, Pis’ma Zh. Eksp. Teor. Fiz. 30, 585 (1979)

    Google Scholar 

  265. S. Komiyama, R. Spies, Hot-carrier population inversion in p-Ge, Phys. Rev. B 23, 6839 (1981)

    Google Scholar 

  266. L.E. Vorob’ev, F.I. Osokin, V.I. Stafeev, V.N. Tulupenko, Discovery of hot hole population inversion in Ge, Pis’ma Zh. Eksp. Teor. Fiz. 34(81), 125 (1981)

    Google Scholar 

  267. S. Komiyama, T. Masumi, K. Kajita, Streaming motion and population inversion of hot electrons in silver halides at crossed electric and magnetic fields, Phys. Rev. B 20, 5192 (1979)

    Google Scholar 

  268. E. Bründermann, E.E. Haller, A.V. Muravjov, Terahertz emission of population-inverted hot-holes in single-crystalline silicon, Appl. Phys. Lett. 73, 723 (1998)

    Google Scholar 

  269. Y.L. Ivanov, Generation of cyclotron resonance radiation by light holes in germanium, Opt. Quantum Electron. 23, S253 (1991)

    Google Scholar 

  270. L.A. Reichertz, O.D. Dubon, G. Sirmain, E. Bründermann, W.L. Hansen, D.R. Chamberlin, A.M. Linhart, H.P. Röser, E.E. Haller, Stimulated far-infrared emission from combined cyclotron resonances in germanium, Phys. Rev. B 56(19), 12069 (1997)

    Google Scholar 

  271. E. Bründermann, in Long-wavelength Infrared Semiconductor Lasers (John Wiley and Sons, New York, 2004), chap. 6 - Widely Tunable Far Infrared Hot Hole Semiconductor Lasers, pp. 279–350

    Google Scholar 

  272. E. Bründermann, D.R. Chamberlin, E.E. Haller, Novel design concepts of widely tunable germanium terahertz lasers, Infrared Phys. Technol. 40(3), 141 (1999)

    Google Scholar 

  273. A. Andronov, V. Kozlov, S. Pavlov, S. Pavlov, Bragg selection in hot hole FIR lasers, Opt. Quantum Electron. 23, S205 (1991)

    Google Scholar 

  274. D.R. Chamberlin, E. Bründermann, E.E. Haller, Planar contact geometry for far-infrared germanium lasers, Appl. Phys. Lett. 74(25), 3761 (1999)

    Google Scholar 

  275. S. Komiyama, S. Kuroda, Far-infrared laser oscillation in p-Ge using external reflectors, Jpn. J. Appl. Phys. 26, L71 (1987)

    Google Scholar 

  276. K. Unterrainer, M. Helm, E. Gornik, E.E. Haller, J. Leotin, Mode structure of the p-germanium far-infrared laser with and without external mirrors: single line operation, Appl. Phys. Lett. 52, 564 (1988)

    Google Scholar 

  277. S. Komiyama, H. Morita, I. Hosako, Continuous wavelength tuning of inter-valence-band laser oscillation in p-type germanium over range of 80–120 μm, Jpn. J. Appl. Phys. 32, 4987 (1993)

    Google Scholar 

  278. E. Bründermann, H.P. Röser, A.V. Muravjov, S.G. Pavlov, V.N. Shastin, Mode fine structure of the FIR p-Ge intervalenceband laser measured by heterodyne mixing spectroscopy with an optically pumped ring gas laser, Infrared Phys. Technol. 36(1), 59 (1995)

    Google Scholar 

  279. A.V. Muravjov, S.H. Withers, H. Weidner, R.C. Strijbos, S.G. Pavlov, V.N. Shastin, R.E. Peale, Single axial-mode selection in a far-infrared p-Ge laser, Appl. Phys. Lett. 76, 1996 (2000)

    Google Scholar 

  280. K. Park, R.E. Peale, H. Weidner, J.J. Kim, Bulk semiconductor lasers at submillimeter/far infrared wavelengths using a regular permanent magnet, IEEE J. of Quantum Electron. 32, 1203 (1996)

    Google Scholar 

  281. F. Keilmann, H. Zuckermann, Transient gain of the germanium hot hole laser, Opt. Communications 109, 296 (1994)

    Google Scholar 

  282. A.V. Muravjov, H. Saxena, R.E. Peale, C.J. Fredricksen, O. Edwards, V.N. Shastin, Injection-seeded internal-reflection-mode p-Ge laser exceeds 10 W peak terahertz power, J. Appl. Phys. 103, 083112 (2008)

    Google Scholar 

  283. J.N. Hovenier, A.V. Muravjov, S.G. Pavlov, V.N. Shastin, R.C. Strijbos, W.T. Wenckebach, Active mode locking of a p-Ge hot hole laser, Appl. Phys. Lett. 71, 443 (1997)

    Google Scholar 

  284. A.V. Muravjov, S.H. Withers, R.C. Strijbos, S.G. Pavlov, V.N. Shastin, R.E. Peale, Actively mode-locked p-Ge laser in Faraday configuration, Appl. Phys. Lett. 75, 2882 (1999)

    Google Scholar 

  285. J.N. Hovenier, R.M. de Kleijn, T.O. Klaassen, W.T. Wenckebach, D.R. Chamberlin, E. Bründermann, E.E. Haller, Mode-locked operation of the copper-doped germanium terahertz laser, Appl. Phys. Lett. 77(20), 3155 (2000)

    Google Scholar 

  286. S. Ebbinghaus, S.J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D.M. Leitner, M. Havenith, An extended dynamical solvation shell around proteins, Proceedings of The National Academy of Sciences of the USA 104(52), 20749 (2007)

    Google Scholar 

  287. E. Bründermann, A.M. Linhart, L. Reichertz, H.P. Röser, O.D. Dubon, W.L. Hansen, G. Sirmain, E.E. Haller, Double acceptor doped Ge: a new medium for inter-valence-band lasers., Appl. Phys. Lett. 68(22), 3075 (1996)

    Google Scholar 

  288. G. Sirmain, L.A. Reichertz, O.D. Dubon, E.E. Haller, W.L. Hansen, E. Bründermann, A.M. Linhart, H.P. Röser, Stimulated far-infrared emission from copper-doped germanium crystals, Appl. Phys. Lett. 70(13), 1659 (1997)

    Google Scholar 

  289. N. Hiromoto, I. Hosako, M. Fujiwara, Far-infrared laser oscillation from a very small p-Ge crystal under uniaxial stress, Appl. Phys. Lett. 74, 3432 (1999)

    Google Scholar 

  290. R.C. Strijbos, J.G.S. Lok, W.T. Wenckebach, A Monte Carlo simulation of mode-locked hot-hole laser operation, J. Phys.: Condens. Matter 6, 7461 (1994)

    Google Scholar 

  291. A.V. Muravjov, R.C. Strijbos, C.J. Fredricksen, H. Weidner, W. Trimble, S.H. Withers, S.G. Pavlov, V.N. Shastin, R.E. Peale, Evidence for self-mode-locking in p-Ge laser emission, Appl. Phys. Lett. 73, 3037 (1998)

    Google Scholar 

  292. S.V. Demihovsky, A.V. Murav’ev, S.G. Pavlov, V.N. Shastin, Stimulated emission using the transitions of shallow acceptor states in germanium, Semicond. Sci. Technol. 7, B622 (1992)

    Google Scholar 

  293. E.E. Orlova, V.N. Shastin, in Proc. 21th Int. Conf. on Infrared and Millimeter Waves, eds. M. von Ortenberg, H.-U. Mueller (Humboldt-Universität zu Berlin, 1996), p. CTh4, ISBN 3-00-000800-4

    Google Scholar 

  294. S.G. Pavlov, R.K. Zhukavin, E.E. Orlova, V.N. Shastin, A.V. Kirsanov, H.-W. Hübers, K. Auen, H. Riemann, Stimulated emission from donor transitions in silicon, Phys. Rev. Lett. 84, 5220 (2000)

    Google Scholar 

  295. H.-W. Hübers, S.G. Pavlov, V.N. Shastin, Terahertz lasers based on germanium and silicon, Semicond. Sci. Technol. 20, 211 (2005)

    Google Scholar 

  296. S.G. Pavlov, R. Eichholz, N.V. Abrosimov, B. Redlich, H.-W. Hübers, Multifrequency terahertz lasing from codoped silicon crystals, Appl. Phys. Lett. 98, 061102 (2011)

    Google Scholar 

  297. S.G. Pavlov, H.-W. Hübers, J.N. Hovenier, T.O. Klaassen, D.A. Carder, P.J. Phillips, B. Redlich, H. Riemann, R. Zhukavin, V.N. Shastin, Stimulated terahertz stokes emission of silicon crystals doped with antimony donors, Phys. Rev. Lett. 96, 037404 (2006)

    Google Scholar 

  298. S.A. Lynch, R. Bates, D.J. Paul, D.J. Norris, A.G. Cullis, Z. Ikonic, R.W. Kelsall, P. Harrison, D.D. Arnone, C.R. Pidgeon, Intersubband electroluminescence from Si/SiGe cascade emitters at terahertz frequencies, Appl. Phys. Lett. 81, 1543 (2002)

    Google Scholar 

  299. A. Borak, Toward bridging the terahertz gap with silicon-based lasers, Science 308, 638 (2005)

    Google Scholar 

  300. R.F. Kazarinov, R.A. Suris, Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice, Sov. Phys. Semicond. 5, 707 (1971)

    Google Scholar 

  301. M. Helm, P. England, E. Colas, F. DeRosa, S. Allen, Intersubband emission from semiconductor superlattices excited by sequential resonant tunneling, Phys. Rev. Lett. 63, 74 (1989)

    Google Scholar 

  302. J. Faist, F. Capasso, D.L. Sivco, C. Sirtorio, A.L. Hutchinson, A.Y. Cho, Quantum cascade laser, Science 264, 553 (1994)

    Google Scholar 

  303. J. Faist, C. Sirtori, in Long-wavelength infrared semiconductor lasers (John Wiley and Sons, New York, 2004), chap. 4 - InP and GaAs-based quantum cascade lasers, pp. 217–278

    Google Scholar 

  304. A. Tredicucci, R. Köhler, in Intersubband Transitions in Quantum Structures (McGraw-Hill, New York, 2006), chap. 2 - Terahertz quantum cascade lasers, pp. 45–105

    Google Scholar 

  305. B. Williams, Terahertz quantum cascade lasers, Nature Photonics 1, 517 (2007)

    Google Scholar 

  306. G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, Far-infrared λ ∼ 87 μm bound-to-continuum quantum-cascade lasers operating up to 90 K, Appl. Phys. Lett. 82, 3165 (2003)

    Google Scholar 

  307. B.S. Williams, H. Callebaut, S. Kumar, Q. Hu, J.L. Reno, 3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation, Appl. Phys. Lett. 82, 1015 (2003)

    Google Scholar 

  308. G. Fasching, V. Tamosiunas, A. Benz, A.M. Andrews, K. Unterrainer, R. Zobl, T. Roch, W. Schrenk, G. Strasser, Subwavelength microdisk and microring terahertz quantum-cascade lasers, IEEE J. of Quantum Electron. 43, 687 (2007)

    Google Scholar 

  309. L.A. Dunbar, R. Houdr, G. Scalari, L. Sirigu, M. Giovannini, J. Faist, Small optical volume terahertz emitting microdisk quantum cascade lasers, Appl. Phys. Lett. 90, 141114 (2007)

    Google Scholar 

  310. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H.E. Beere, D.A. Ritchie, S.P. Khanna, E.H. Linfield, A.G. Davies, Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions, Nature 457, 174 (2009)

    Google Scholar 

  311. E. Mujagic, C. Deutsch, H. Detz, P. Klang, M. Nobile, A.M. Andrews, W. Schrenk, K. Unterrainer, G. Strasser, Vertically emitting terahertz quantum cascade ring lasers, Appl. Phys. Lett. 95, 011120 (2009)

    Google Scholar 

  312. L. Mahler, R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, D.A. Ritchie, A.G. Davies, Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators, Appl. Phys. Lett. 84, 5546 (2004)

    Google Scholar 

  313. H.-W. Hübers, S.G. Pavlov, A.D. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H.E. Beere, D.A. Ritchie, E.H. Linfield, Terahertz quantum cascade laser as local oscillator in a heterodyne receiver, Opt. Express 13, 5890 (2005)

    Google Scholar 

  314. H. Richter, A.D. Semenov, S. Pavlov, L. Mahler, A. Tredicucci, K. Ilin, M. Siegel, H.-W. Hübers, Terahertz heterodyne receiver with quantum cascade laser and hot electron bolometer mixer in a pulse tube cooler, Appl. Phys. Lett. 93, 141108 (2008)

    Google Scholar 

  315. R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, S.S. Dhillon, C. Sirtori, High-performance continuous-wave operation of superlattice terahertz quantum-cascade lasers, Appl. Phys. Lett. 82(10), 1518 (2003)

    Google Scholar 

  316. H.-W. Hübers, S.G. Pavlov, H. Richter, A.D. Semenov, L. Mahler, A. Tredicucci, H.E. Beere, D.A. Ritchie, Molecular spectroscopy with terahertz quantum cascade lasers, J. Nanoelectronics Optoelectronics 2, 101 (2007)

    Google Scholar 

  317. A.J.L. Adam, I. Kašalynas, J.N. Hovenier, T.O. Klaassen, J.R. Gao, E.E. Orlova, B.S. Williams, S. Kumar, Q. Hu, J.L. Reno, Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions, Appl. Phys. Lett. 88, 151105 (2006)

    Google Scholar 

  318. E.E. Orlova, J.N. Hovenier, T. Klaassen, I. Kašalynas, A.J.L. Adam, J.R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, J.L. Reno, Antenna model for wire lasers, Phys. Rev. Lett. 96, 173904 (2006)

    Google Scholar 

  319. M.L. Wei, Q.Q. Alan, S. Kumar, B.S. Williams, Q. Hu, J.L. Reno, High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides, Opt. Lett. 32, 2840 (2007)

    Google Scholar 

  320. M.I. Amanti, M. Fisher, C. Walther, G. Scalari, J. Faist, Horn antennas for terahertz quantum cascade lasers, Electron. Lett. 43(10), 573 (2007)

    Google Scholar 

  321. S. Kumar, B.S. Williams, Q. Qin, A.W. Lee, Q. Hu, J.L. Reno, Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides, Opt. Express 15, 113 (2007)

    Google Scholar 

  322. A. Barkan, F.K. Tittel, D.M. Mittleman, R. Dengler, P.H. Siegel, G. Scalari, L. Ajili, J. Faist, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, Linewidth and tuning characteristics of terahertz quantum cascade lasers, Opt. Lett. 295, 575 (2004)

    Google Scholar 

  323. A. Baryshev, J.N. Hovenier, A.J.L. Adam, I. Kaalynas, J.R. Gao, T.O. Klaassen, B.S. Williams, S. Kumar, Q. Hu, J. Reno, Phase-locking and spectral linewidth of a two-mode terahertz quantum cascade laser, Appl. Phys. Lett. 89, 031115 (2006)

    Google Scholar 

  324. A.L. Betz, R.T. Boreiko, B.S. Williams, S. Kumar, Q. Hu, J.L. Reno, Frequency and phase-lock control of a 3 THz quantum cascade laser, Opt. Lett. 30, 1837 (2005)

    Google Scholar 

  325. D. Rabanus, U.U. Graf, M. Philipp, O. Ricken, J. Stutzki, B.Vowinkel, M. C.Wiedner, C. Walther, M. Fischer, J. Faist, Phase locking of a 1.5 terahertz quantum cascade laser and use as a local oscillator in a heterodyne HEB receiver, Opt. Express 17, 1159 (2009)

    Google Scholar 

  326. H. Richter, S.G. Pavlov, A.D. Semenov, L. Mahler, A. Tredicucci, H.E. Beere, D.A. Ritchie, H.-W. Hübers, Sub-megahertz frequency stabilization of a terahertz quantum cascade laser to a molecular absorption line, Appl. Phys. Lett. 96, 071112 (2010)

    Google Scholar 

  327. S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, D. Ritchie, Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser, Nature Photonics 4, 636 (2010)

    Google Scholar 

  328. L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, Continuous-wave operation of far-infrared quantum cascade lasers, Electron. Lett. 38, 1675 (2002)

    Google Scholar 

  329. Q. Qin, B.S. Williams, S. Kumar, J.L. Reno, Q. Hu, Tuning a terahertz wire laser, Nature Photonics 3, 732 (2009)

    Google Scholar 

  330. A.W.M. Lee, Q. Qin, S. Kumar, B.S. Williams, Q. Hu, J.L. Reno, Real-time terahertz imaging over a standoff distance ( > 25 meters), Appl. Phys. Lett. 89, 141125 (2006)

    Google Scholar 

  331. H.-W. Hübers, S.G. Pavlov, H. Richter, A.D. Semenov, L. Mahler, A. Tredicucci, H.E. Beere, D.A. Ritchie, High resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser, Appl. Phys. Lett. 89, 061115 (2006)

    Google Scholar 

  332. J.R. Gao, J.N. Hovenier, Z.Q. Yang, J.J.A. Baselmans, A. Baryshew, M. Hajenius, T.M. Klapwijk, A.J.L. Adam, T.O. Klaassen, B.S. Williams, S. Kumar, Q. Hu, J.L. Reno, Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer, Appl. Phys. Lett. 86, 244104 (2005)

    Google Scholar 

  333. H. Richter, M. Greiner-Bär, S.G. Pavlov, A.D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T.Grahn, H.-W. Hübers, A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler, Opt. Express 18, 10177 (2010)

    Google Scholar 

  334. M.C. Wanke, E.W. Young, C.D. Nordquist, M.J. Cich, A.D. Grine, C.T. Fuller, J.L. Reno, M. Lee, Monolithically integrated solid-state terahertz transceivers, Nature Photonics 4, 565 (2010)

    Google Scholar 

  335. E.R. Brown, F.W. Smith, K.A. McIntosh, Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors, J. Appl. Phys. 73, 1480 (1993)

    Google Scholar 

  336. K.A. McIntosh, K.B. Nichols, S. Verghese, E.R. Brown, Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs, Appl. Phys. Lett. 70, 354 (1997)

    Google Scholar 

  337. W. Shi, Y.J. Dinga, A monochromatic and high-power terahertz source tunable in the ranges of 2.7–38.4 and 58.2–3540 μm for variety of potential applications, Appl. Phys. Lett. 84(10), 1635 (2004)

    Google Scholar 

  338. S. Matsuura, M. Tani, K. Sakai, Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas, Appl. Phys. Lett. 70(5), 559 (1997)

    Google Scholar 

  339. M. Tani, P. Gu, M. Hyodo, K. Sakai, T. Hidaka, Generation of coherent terahertz radiation by photomixing of dual-mode lasers, Opt. Quantum Electron. 32, 503 (2000)

    Google Scholar 

  340. T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, K. Donhuijsen, Continuous-wave THz imaging, Electron. Lett. 37, 1461 (2001)

    Google Scholar 

  341. S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J.V. Moloney, A.S. Moskalenko, M. Kira, S.W. Koch, S. Saito, K. Sakai, Four-wave mixing and direct terahertz emission with two-color semiconductor lasers, Appl. Phys. Lett. 84, 3585 (2004)

    Google Scholar 

  342. M. Scheller, J.M. Yarborough, J.V. Moloney, M. Fallahi, M. Koch, S.W. Koch, Room temperature continuous wave milliwatt terahertz source, Opt. Express 18, 27112 (2010)

    Google Scholar 

  343. M.A. Belkin, F. Capasso, A. Belyanin, D.L. Sivco, A.Y. Cho, D.C. Oakley, C.J. Vineis, G.W. Turner, Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation, Nature Photonics 1, 288 (2007)

    Google Scholar 

  344. M.A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation, Appl. Phys. Lett. 92, 201101 (2008)

    Google Scholar 

  345. S.M. Duffy, S. Verghese, K.A. McIntosh, A. Jackson, A.C. Gossard, S. Matsuura, Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power, IEEE Trans. Microw. Theory Tech. 49(6), 1032 (2001)

    Google Scholar 

  346. B. Sartorius, M. Schlak, D. Stanze, H. Roehle, H. Künzel, D. Schmidt, H.-G. Bach, R. Kunkel, M. Schell, Continuous wave terahertz systems exploiting 1.5 μm telecom technologies, Opt. Express 17, 15001 (2009)

    Google Scholar 

  347. D.D. Bicancic, B.F.J. Zuidberg, A. Dymanus, Generation of continuously tunable laser sidebands in the submillimeter region, Appl. Phys. Lett. 32, 367 (1978)

    Google Scholar 

  348. W.A.M. Blumberg, H.R. Fetterman, D.D. Peck, P.F. Goldsmith, Tunable submillimeter sources applied to the excited state rotational spectroscopy and kinetics of CH3F, Appl. Phys. Lett. 35, 582 (1979)

    Google Scholar 

  349. J. Farhoomand, G.A. Blake, M.A. Frerking, H.M. Pickett, Generation of tunable laser sidebands in the far-infrared region, J. Appl. Phys. 57, 1763 (1984)

    Google Scholar 

  350. P. Verhoeve, E. Zwart, M. Versluis, M. Drabbels, J.J. ter Meulen, W.L. Meerts, D.B. McLay, A far infrared laser sideband spectrometer in the frequency region 550-2700 GHz, Rev. Sci. Instrum. 61, 1612 (1990)

    Google Scholar 

  351. G.A. Blake, K.B. Laughlin, R.C. Cohen, K.L. Busarow, D.H. Gwo, C.A. Schmuttenmaer, D.W. Steyert, R. Saykally, The Berkeley tunable far infrared spectrometers, Rev. Sci. Instrum. 62, 1701 (1991)

    Google Scholar 

  352. E.R. Mueller, J. Waldman, Power and spatial mode measurements of sideband generated, spatially filtered, submillimeter radiation, IEEE Trans. Microw. Theory Tech. 42, 1891 (1994)

    Google Scholar 

  353. D.S. Kurtz, J.L. Hesler, T.W. Crowe, R.M. Weikle, Submillimeter-wave sideband generation using varactor Schottky diodes, IEEE Trans. Microw. Theory Tech. 50(11), 2610 (2002)

    Google Scholar 

  354. R.L. Aggarwal, B. Lax, H.R. Fetterman, P.E. Tannenwald, B.J. Clifton, CW generation of tunable narrow-band far-infrared radiation, J. Appl. Phys. 45, 3972 (1974)

    Google Scholar 

  355. K.M. Evenson, D.A. Jennings, F. R.Petersen, Tunable far-infrared spectroscopy, Appl. Phys. Lett. 44, 576 (1984)

    Google Scholar 

  356. H.-W. Hübers, G.W. Schwaab, H.P. Röser, Video detection and mixing performance of GaAs Schottky-barrier diodes at 30 THz and comparison with metal-insulator-metal diodes, J. Appl. Phys. 75, 4243 (1994)

    Google Scholar 

  357. L.M. Matarese, K.M. Evenson, Improved coupling to infrared whisker diodes by use of antenna theory, Appl. Phys. Lett. 17, 8 (1970)

    Google Scholar 

  358. H. Odashima, L.R. Zink, K.M. Evenson, Tunable far-infrared spectroscopy extended to 9.1 THz, Opt. Lett. 24, 406 (1999)

    Google Scholar 

  359. C. Fumeaux, W. Herrmann, F.K. Kneubühl, H. Rothuizen, Nanometer thin film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation, Infrared Phys. Technol. 39, 123 (1998)

    Google Scholar 

  360. A. Stöhr, A. Malcocci, A. Sauerwald, I.C. Mayorga, R. Güsten, D.S. Jäger, Ultra-wide-band traveling-wave photodetectors for photonic local oscillators, IEEE/OSA J. of Lightwave Technol. 21(12), 3062 (2003)

    Google Scholar 

  361. H. Ito, F. Nakajima, T. Furuta, T. Ishibashi, Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes, Semicond. Sci. Technol. 20, S191 (2005)

    Google Scholar 

  362. A. Madjar, N. Koka, J. Bloch, P. Yu, A. Stöhr, D. Jäger, A novel analytical model as a design tool for uni-traveling-carrier traveling wave photo detectors approaching 1 THz, IEEE Trans. Microw. Theory Tech. 57(1), 223 (2009)

    Google Scholar 

  363. I. Mehdi, in Proc. Conf. on Millimeter and Submillimeter Detectors for Astronomy II (SPIE, Glasgow, 2004), THz local oscillator technology, Proc. SPIE 5498, pp. 103–112

    Google Scholar 

  364. S.A. Maas, Nonlinear microwave circuits (IEEE Press, New York, 1997)

    Google Scholar 

  365. G. Chattopadhyay, E. Schlecht, J.S. Ward, J.J. Gill, H.H.S. Javadi, F. Maiwald, I. Mehdi, An all-solid-state broad-band frequency multiplier chain at 1500GHz, IEEE Trans. Microw. Theory Tech. 52, 1538 (2004)

    Google Scholar 

  366. A. Maestrini, J. Ward, J. Gill, H. Javadi, E. Schlecht, G. Chattopadhyay, F. Maiwald, N. Erickson, I. Mehdi, A 1.7-1.9 THz local oscillator source, IEEE Microw. and Wireless Components Lett. 14, 253 (2004)

    Google Scholar 

  367. Y. Fu, J. Stake, L. Dillner, M. Willander, E.L. Kollberg, AlGaAs/GaAs and InAlAs/InGaAs heterostructure barrier varactors, J. Appl. Phys. 82, 5568 (1997)

    Google Scholar 

  368. J. Stake, T. Bryllert, T.A. Emadi, J. Vukusic, in Terahertz Frequency Detection and Identification of Materials and Objects (Springer, 2007), chap. 1 - Terahertz generation by multiplication, pp. 17–30

    Google Scholar 

  369. R. Scheurer, M. Haeussler, K.F. Renk, E. Schomburg, Y.I. Koschurinov, D.G. Pavelev, N. Mleev, V. Ustinov, A. Zhukov, Frequency multiplication of microwave radiation by propagating space-charge domains in a semiconductor superlattice, Appl. Phys. Lett. 82, 2826 (2003)

    Google Scholar 

  370. S. Winnerl, E. Schomburg, S. Brandl, K.F. Renk, M.C. Wanke, S.J. Allen, A.A. Ignatov, V. Ustinov, A. Zhukov, P.S. Kopeev, Frequency doubling and tripling of terahertz radiation in a GaAs/AlAs superlattice due to frequency modulation of bloch oscillations, Appl. Phys. Lett. 77, 1259 (2000)

    Google Scholar 

  371. C.P. Endress, F. Lewen, T.F. Giesen, S. Schlemmer, D.G. Paveliev, Y.I. Koschurinov, V.M. Ustinov, A.E. Zhucov, Application of superlattice multipliers for high-resolution terahertz spectroscopy, Rev. Sci. Instrum. 78, 043106 (2007)

    Google Scholar 

  372. G. Kozlov, A. Volkov, in Millimeter and submillimeter wave spectroscopy of solids (Springer-Verlag, Berlin, Heidelberg, 1998), chap. 3 - Coherent source submillimeter wave spectroscopy, pp. 51–109

    Google Scholar 

  373. M. Philipp, U.U. Graf, A. Wagner-Gentner, D. Rabanus, F. Lewen, Compact 1.9 THz BWO local-oscillator for the GREAT heterodyne receiver, Infrared Phys. Technol. 51(1), 54 (2007)

    Google Scholar 

  374. S.J. Smith, E.M. Purcell, Visible light from localised surface charges moving across a grating, Phys. Rev. 92, 10693 (1953)

    Google Scholar 

  375. F.S. Rusin, G.D. Bogomolov, Orotron – an electronic oscillator with an open resonator and reflecting grating, Proc. IEEE 57, 720 (1969)

    Google Scholar 

  376. K. Mizuno and S. Ono, Infrared and Millimeter Waves (Academic Press, New York, San Francisco, London, 1979), Sources of Radiation, Vol. 1, chap. 5 - The Ledatron, pp. 213–233

    Google Scholar 

  377. D.E. Wortman, R.P. Leavitt, H. Dropkin, Improved orotron performance in the 50- to 75-GHz frequency region, IEEE Trans. Electron. Dev. 29, 1639 (1982)

    Google Scholar 

  378. V.L. Bratman, B.S. Dumesh, A.E. Fedotov, Y.A. Grishin, F.S. Rusin, Broadband orotron operation at millimeter and submillimeter waves, Int. J. Infrared Millimeter Waves 23, 1595 (2002)

    Google Scholar 

  379. J. Urata, M. Goldstein, M.F. Kimmitt, A. Naumov, C. Platt, J.E. Walsh, Superradiant Smith-Purcell emission, Phys. Rev. Lett. 80, 516 (1998)

    Google Scholar 

  380. H.L. Andrews, C.H. Boulware, C.A. Brau, J.D. Jarvis, Dispersion and attenuation in a Smith-Purcell free electron laser, Phys. Rev. ST Accel. Beams 8(5), 050703 (2005)

    Google Scholar 

  381. H.L. Andrews, C.A. Brau, J.D. Jarvis, C.F. Guertin, A. O’Donnell, B. Durant, T.H. Lowell, M.R. Mross, Observation of THz evanescent waves in a Smith-Purcell free-electron laser, Phys. Rev. ST Accel. Beams 12(8), 080703 (2009)

    Google Scholar 

  382. M. Mross, T. Lowell, R. Durant, M. Kimmitt, Performance characteristics of a Smith-Purcell tunable terahertz source, J. Biol. Phys. 29, 295 (2003)

    Google Scholar 

  383. V.L. Bratman, M. Yu. Glyavin, Yu. K. Kalynov, A. G. Litvak, A. G. Luchinin, A. V. Savilov and V. E. Zapevalov, Terahertz Gyrotrons at IAP RAS: Status and New Designs, J. Infrared Milli. Terahz. Waves 32, 371–379 (2011)

    Google Scholar 

  384. V.L. Bratman, A.E. Fedotov, P.B. Makhalov, Experimental demonstration of Smith-Purcell radiation enhancement by frequency multiplication in open cavity, Appl. Phys. Lett. 98, 061503 (2011)

    Google Scholar 

  385. M.K. Hornstein, V.S. Bajaj, R.G. Griffin, R.J. Temkin, Continuous-wave operation of a 460-GHz second harmonic gyrotron oscillator, IEEE Trans. Plasma Science 34, 524 (2006)

    Google Scholar 

  386. N.I. Zaytsev, T.B. Pankratova, M.I. Petelin, V.A. Flyagin, Millimeter- and submillimeter-wave gyrotrons, Radio Eng. Electron Phys. 19, 103 (1974)

    Google Scholar 

  387. J. Schneider, Stimulated emission of radiation by relativistic electrons in a magnetic field, Phys. Rev. Lett. 2, 504 (1959)

    Google Scholar 

  388. T. Idehara, H. Tsuchiya, L. Agusu, S. Mitsudo, H. Murase, H. Mori, T. Kanemaki, T. Saito, Development of a THz gyrotron with 20 T pulsed magnet, J. Phys.: Conference Series 51, 553 (2006)

    Google Scholar 

  389. L. Agusu, T. Idehara, H. Mori, T.Saito, I. Ogawa, S. Mitsudo, Design of a CW THz gyrotron (Gyrotron FU CW III) using a 20 T superconducting magnet, Int. J. Infrared Millimeter Waves 28, 315 (2007)

    Google Scholar 

  390. V.A. Flyagin, A.G. Luchinin, G.S. Nusinovich, Submillimeter-wave gyrotrons: Theory and experiment, Int. J. Infrared Millimeter Waves 4, 629 (1983)

    Google Scholar 

  391. S.N. Vlasov, L.I. Zagryadskaya, M.I. Petelin, Transformation of a whispering gallery mode, propagating on a circular waveguide, into a beam of waves, Radio Eng. Electron Phys. 20, 14 (1975)

    Google Scholar 

  392. E.M. Choi, M.A. Shapiro, J.R. Sirigiri, R.J. Temkin, Calculation of radiation from a helically cut waveguide for a gyrotron mode converter in the quasi-optical approximation, Int. J. Infrared Millimeter Waves 30, 8 (2009)

    Google Scholar 

  393. M.K. Hornstein, V.S. Bajaj, R.G. Griffin, K.E. Kreischer, I. Mastovsky, M.A. Shapiro, J.R. Sirigiri, R.J. Temkin, Second harmonic operation at 460 GHz and broadband continuous frequency tuning of a gyrotron oscillator, IEEE Trans. Electron Devices 52, 798 (2005)

    Google Scholar 

  394. K.D. Hong, G.F. Brand, T. Idehara, A 150–600 GHz step-tunable gyrotron, J. Appl. Phys. 74, 5250 (1993)

    Google Scholar 

  395. F.R. Elder, A.M. Gurewitsch, R.V. Langmuir, H.C. Pollock, Radiation from electrons in a synchrotron, Phys. Rev. 71, 829 (1947)

    Google Scholar 

  396. G.P. Williams, Filling the THz gap - high power sources and applications, Rep. Prog. Phys. 69, 301 (2006)

    Google Scholar 

  397. H. Wiedemann, Synchrotron radiation (Springer, Berlin, Heidelberg, 2007)

    Google Scholar 

  398. T. Nakazato, M. Oyamada, N. Niimura, S. Urasawa, O. Konno, A. Kagaya, T. Kamiyama, Y. Torizuka, T. Nanba, Y. Kondo, Y. Shibata, K. Ishi, T. Ohsaka, M. Ikezawa, Observation of coherent synchrotron radiation, Phys. Rev. Lett. 63, 1245 (1989)

    Google Scholar 

  399. G.L. Carr, M.C. Martin, W.R. McKinney, K. Jordan, G.R. Neil, G.P. Williams, High-power terahertz radiation from relativistic electrons, Nature 420, 153 (2002)

    Google Scholar 

  400. H.-W. Hübers, A. Semenov, K. Holldack, U. Schade, G. Wüstefeld, G. Goltsman, Time domain analysis of coherent terahertz synchrotron radiation, Appl. Phys. Lett. 87, 184103 (2005)

    Google Scholar 

  401. J.S. Nodvick, D. Saxon, Supression of coherent radiation by electrons in a synchrotron, Phys. Rev. 96, 180 (1954)

    Google Scholar 

  402. M. Abo-Bakr, J. Feikes, K. Holldack, P. Kuske, W.B. Peatman, U. Schade, G. Wüstefeld, H.-W. Hübers, Brilliant, coherent far infrared (THz) synchrotron radiation, Phys. Rev. Lett. 90, 094801 (2003)

    Google Scholar 

  403. J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, G. Ulm, Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation, Phys. Rev. ST Accel. Beams 14, 030705 (2011)

    Google Scholar 

  404. K. Holldack, S. Khan, R. Mitzner, T. Quast, Femtosecond terahertz radiation from femtoslicing at BESSY, Phys. Rev. Lett. 96, 054801 (2006)

    Google Scholar 

  405. U. Schade, K. Holldack, P. Kuske, G. Wüstefeld, H.-W. Hübers, THz near-field imaging employing synchrotron radiation, Appl. Phys. Lett. 84, 1422 (2004)

    Google Scholar 

  406. E.J. Singley, M. Abo-Bakr, D.N. Basov, J. Feikes, P. Guptasarma, K. Holldack, H.-W. Hübers, P. Kuske, M.C. Martin, W.B. Peatman, U. Schade, G. Wüstefeld, New scientific opportunities with intense coherent THz synchrotron radiation: measuring the Josephson plasma resonance in Bi2Sr2CaCu2O8, Phys. Rev. B 69, 092512 (2004)

    Google Scholar 

  407. F. Sannibale, J.M. Byrd, A. Loftsdottir, M. Venturini, M. Abo-Bakr, J. Feikes, K. Holldack, P. Kuske, G. Wüstefeld, H.-W. Hübers, R. Warnock, A model for producing stable, broadband terahertz coherent synchrotron radiation in storage rings, Phys. Rev. Lett. 93, 094801 (2004)

    Google Scholar 

  408. B.N. Murdin, Far-infrared free-electron lasers and their applications, Contemp. Phys. 50(2), 391 (2009)

    Google Scholar 

  409. H. Motz, Applications of the radiation from fast electron beams, J. Appl. Phys. 22, 527 (1951)

    Google Scholar 

  410. R.M. Phillips, The Ubitron, a high-power traveling-wave tube based on a periodic beam interaction in unloaded waveguide, IRE Trans. Electron Dev. 7, 231 (1960)

    Google Scholar 

  411. J.M.J. Madey, H.A. Schwettman, W.M. Fairbank, A free electron laser, IEEE Trans. Nuclear Sci. 20, 980 (1973)

    Google Scholar 

  412. E. Giovenale, M. D’Arienzo, A. Doria, G. Gallerano, A. Lai, G. Messina, D. Piccinelli, Absorption and diffusion measurements of biological samples using a THz free electron laser, J. Biol. Phys. 29, 159 (2003)

    Google Scholar 

  413. S. Lynch, G. Matmon, S.G. Pavlov, K.L. Litvinenko, B. Redlich, A.F.G. van der Meer, N.V. Abrosimov, and H.-W. Hübers, Inhomogeneous broadening of phosphorus donor lines in the infrared spectra of a SiGe single crystal, Phys. Rev. 82, 245206 (2010)

    Google Scholar 

  414. B.C. Johnson, H.E. Puthoff, J. SooHoo, S.S. Sussman, Power and linewidth of tunable stimulated far-infrared emission in LiNbO3, Appl. Phys. Lett. 18, 181 (1971)

    Google Scholar 

  415. M.A. Piestrup, R.N. Fleming, R.H. Pantell, Continuously tunable submillimeter wave source, Appl. Phys. Lett. 26, 418 (1975)

    Google Scholar 

  416. J. Nishizawa, K. Suto, Semiconductor Raman laser, J. Appl. Phys. 51, 2429 (1980)

    Google Scholar 

  417. K. Kawase, J.-ichi Shikata, H. Ito, Terahertz wave parametric source, J. Phys. D: Appl. Phys. 35, R1 (2002)

    Google Scholar 

  418. K. Kawase, Y. Ogawa, H. Minamide, H. Ito, Terahertz parametric sources and imaging applications, Semicond. Sci. Technol. 20, S258 (2005)

    Google Scholar 

  419. T.J. Edwards, D. Walsh, M.B. Spurr, C.F. Rae, M.H. Dunn, P.G. Browne, Compact source of continuously and widely-tunable terahertz radiation, Opt. Express 14(4), 1582 (2006)

    Google Scholar 

  420. G. Torosyan, K. Nerkararyan, Y. Avetisyan, R. Beigang, Generation of narrowband tunable THz-radiation via optical rectification in periodically poled materials, J. Biol. Phys. 29, 287 (2003)

    Google Scholar 

  421. R.C. Jones, Phenomenological description of the response and detecting ability of radiation detectors, Proc. IRE 47, 1495 (1959)

    Google Scholar 

  422. R.A. Smith, F.E. Jones, R.P. Chasmar, in Detection and Measurement of Infra-red Radiation (Clarendon, Oxford, 1968), chap. 7 - The Ultimate Sensitivity of Infra-Red Detectors, p. 221

    Google Scholar 

  423. K.M. van Vliet, Irreversible thermodynamics and carrier density fluctuations in semiconductors, Phys. Rev. 110, 50 (1958)

    Google Scholar 

  424. T.W. Kenny, W.J. Kaiser, S.B. Waltman, J.K. Reynolds, Novel infrared detector based on a tunneling displacement transducer, Appl. Phys. Lett. 59, 1820 (1991)

    Google Scholar 

  425. T.W. Kenny, J.K. Reynolds, J.A. Podosek, E.C. Vote, L.M. Miller, H.K. Rockstad, W.J. Kaiser, Micromachined infrared sensors using tunneling displacement transducers, Rev. Sci. Instr. 67, 112 (1996)

    Google Scholar 

  426. J.B. Chevrier, K. Baert, T. Slater, An infrared pneumatic detector made by micromachining technology, J. Micromech. Microeng. 5, 193 (1995)

    Google Scholar 

  427. O. Ajakaiye, J. Grade, C. Shin, T. Kenny, Wafer-scale fabrication of infrared detectors based on tunneling displacement transducers, Sensor Actuator A 134(2), 575 (2007)

    Google Scholar 

  428. C. Jiang, M.E. McConney, S. Singamaneni, E. Merrick, Y. Chen, J. Zhao, L. Zhang, V.V. Tsukruk, Thermo-optical arrays of flexible nanoscale nanomembranes freely suspended over microfabricated cavities as IR microimagers, Chem. Mater. 18, 2632 (2006)

    Google Scholar 

  429. A.G. Chynoweth, Dynamic method for measuring the pyroelectric effect with special reference to barium titanate, J. Appl. Phys. 27, 78 (1956)

    Google Scholar 

  430. J. Cooper, A fast -response pyroelectric thermal detector, J. Sci. Instr. 39, 462 (1962)

    Google Scholar 

  431. A.G. Chynoweth, Pyroelectricity, internal domains, and interface charges in triglycine sulfate, Phys. Rev. 117, 1235 (1960)

    Google Scholar 

  432. A.L. Stanford, Detection of electromagnetic radiation using the pyroelectric effect, Solid State Electron. 8, 747 (1965)

    Google Scholar 

  433. P.J. Lock, Doped triglycine sulfate for pyroelectric applications, Appl. Phys. Lett. 19, 390 (1971)

    Google Scholar 

  434. R.J. Phelan, R.J. Mahler, A.R. Cook, High D* pyroelectric polyvinylfluoride detectors, Appl. Phys. Lett. 19, 337 (1971)

    Google Scholar 

  435. A.M. Glass, J.H. McFee, J.G. Bergman, Pyroelectric properties of polyvinylidene flouride and its use for infrared detection, J. Appl. Phys. 42, 5219 (1971)

    Google Scholar 

  436. W.-s. Zhu, J.R. Izatt, B.K. Deka, Pyroelectric detection of submicrosecond laser pulses between 230 and 530 μm, Appl. Opt. 28(17), 3647 (1989)

    Google Scholar 

  437. F.B. Foote, D.T. Hodges, H.B. Dyson, Calibration of power and energy meters for the far infrared/near millimeter wave region, Int. J. Infrared Millimeter Waves 2, 773 (1981)

    Google Scholar 

  438. B. Vowinkel, Broad-band calorimeter for precision measurement of millimeter and submillimeter-wave power, IEEE Trans. Instrum. Meas. 29, 183 (1980)

    Google Scholar 

  439. A.C. Macpherson, D.M. Kerns, A microwave microcalorimeter, Rev. Sci. Instr. 26, 27 (1955)

    Google Scholar 

  440. N. Erickson, in Proc. of the 13th Int. Symp. on Space Terahertz Technology (Harvard, 2002), A fast, very sensitive calorimetric power meter for millimetre to submillimeter wavelengths, pp. 301–307

    Google Scholar 

  441. B. Vowinkel, H.P. Röser, Precision measurement of power at millimeter and sub-millimeter wavelengths using a waveguide calorimeter, Int. J. Infrared Millimeter Waves 3, 471 (1982)

    Google Scholar 

  442. R.J. Wylde, Installation and operating instructions for the TK TeraHertz Absolute Power Meter System. Tech. rep., Thomas Keating Ltd., Station Mills, Billingshurst, West Sussex, RH14 9SH, England (2002)

    Google Scholar 

  443. A.M. Danishevskii, A.A. Kastal’skii, S.M. Ryvkin, I.D. Yaroshetskii, Photon drag of free carriers in direct interband transitions in semiconductors, Zh. Eksp. Teor. Fiz. 58, 544 (1970)

    Google Scholar 

  444. A.F. Gibson, M.F. Kimmitt, A.C. Walker, Photon drag in germanium., Appl. Phys. Lett. 17, 75 (1970)

    Google Scholar 

  445. C. Baxter, R. Loudon, Radiation pressure and the photon momentum in dielectrics, J. Mod. Opt. 57, 830 (2010)

    Google Scholar 

  446. M.F. Kimmitt, Recent development of infrared detectors, Infrared Phys. 17, 459 (1977)

    Google Scholar 

  447. S.D. Ganichev, Y.V. Terent’ev, I.D. Yaroshetskii, Photon-drag photodetectors for the far-IR and submillimeter regions, Sov. Tech. Phys. Lett. 11(1), 20 (1985)

    Google Scholar 

  448. A.F. Gibson, M.F. Kimmitt, in Infrared Millimeter Waves (Academic Press, New York, London, Toronto, Sydney, San Francisco, 1980), Submillimeter Techniques, vol. 3, chap. 2 - Photon Drag Detection, pp. 181–217 (Calibration Standards for 100–2,000 μm, pp. 212–213)

    Google Scholar 

  449. M.F. Kimmitt, A.A. Serafetinides, H.P. Roser, D.A. Huckridge, Submillimeter performance of photon-drag detectors, Infrared Phys. 18, 675 (1978)

    Google Scholar 

  450. M.A. Kinch, Compensated silicon-impurity conduction bolometer, J. Appl. Phys. 42, 5861 (1971)

    Google Scholar 

  451. E.E. Haller, Physics and design of advanced IR bolometers and photoconductors, Infrared Phys. 25, 257 (1985)

    Google Scholar 

  452. P.L. Richards, Bolometers for infrared and millimeter waves, J. Appl. Phys. 76, 1 (1994)

    Google Scholar 

  453. J. Clarke, G.I. Hoffer, P.L. Richards, N.H. Yeh, Superconductive bolometers for submillimeter wavelengths, J. Appl. Phys. 48, 4865 (1977)

    Google Scholar 

  454. P.D. Mauskopf, J.J. Bock, H. DelCastillo, W.H. Holzapfel, A.E. Lange, Composite infrared bolometers with Si3N4 micromesh absorbers, Appl. Opt. 36, 765 (1997)

    Google Scholar 

  455. H.T. Nguyen, P. Ringold, P.A.R. Ade, J. Battle, J.W. Beeman, J.J. Bock, S.C. Elliott, P.C. Hargrave, B. Schulz, A.D. Turner, V.V. Hristov, M. Weilert, and L. Zhang, in Millimeter and submillimeter detectors and instrumentation for astronomy III, ed. by J. Zmuidzinas, W.S. Holland, S. Withington, W.D. Duncan (2006), A report on laboratory performance of the bolometric detector arrays for SPIRE/HSO (paper II), Proc. SPIE 6275, pp. 627518

    Google Scholar 

  456. N. Jethava, E. Kreysa, G. Siringo, W. Esch, H.P. Gemünd, T. May, S. Anders, L. Fritzsch, R. Boucher, V. Zakosarenko, H.G. Meyer, in Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III, ed. by J. Zmuidzinas, W.S. Holland, S. Withington, W.D. Duncan (2006), A superconducting bolometer camera for APEX, Proc. SPIE 6275, p. 62751A

    Google Scholar 

  457. S.F. Lee, J.M. Gildemeister, W. Holmes, A.T. Lee, P.L. Richards, Voltage-biased superconducting transition-edge bolometer with strong electrothermal feedback operated at 370 mK, Appl. Opt. 37(16), 3391 (1998)

    Google Scholar 

  458. A.T. Lee, P.L. Richards, S.W. Nam, B. Cabrera, K.D. Irwin, A superconducting bolometer with strong electrothermal feedback, Appl. Phys. Lett. 69, 1801 (1996)

    Google Scholar 

  459. J.M. Gildemeister, A.T. Lee, P.L. Richards, A fully lithographed voltage-biased superconducting spiderweb bolometer, Appl. Phys. Lett. 74, 868 (1999)

    Google Scholar 

  460. J.M. Gildemeister, A.T. Lee, P.L. Richards, Monolothic arrays of absorber-coupled voltage-biased superconducting bolometers, Appl. Phys. Lett. 77, 4040 (2000)

    Google Scholar 

  461. D.J. Benford, J.G. Staguhn, T.J. Ames, C.A. Allen, J.A. Chervenak, C.R. Kennedy, S. Lefranc, S.F. Maher, S.H. Moseley, F. Pajot, C. Rioux, R. Shafer, G.M. Voellmer, in Millimeter and Submillimeter detectors and instrumentation for astronomy III, ed. by J. Zmuidzinas, W.S. Holland, S. Withington, W. Duncan (2006), First astronomy images with a multiplexed superconducting bolometer array, Proc. SPIE 6275, pp. 62,751C–2

    Google Scholar 

  462. W. Holland, M. MacIntosh, A. Fairley, D. Kelly, D. Montgomery, D. Gostick, E. Atad-Ettedguim, M. Ellis, I. Robinson, M. Hollister, A. Woodcraft, P. Ade, I. Walker, K. Irwin, G. Hilton, W. Duncan, C. Reintsema, A. Walton, W. Parkes, C. Dunars, M. Fich, J. Kycia, M. Halpern, D. Scott, A. Gibb, J. Molnar, E. Chapin, D. Bintley, S. Craig, T. Chylek, T. Jenness, F. Economou, G. Davis, in Millimeter and Submillimeter detectors and instrumentation for astronomy III, ed. by J. Zmuidzinas, W.S. Holland, S. Withington, W. Duncan (2006), SCUBA-2: a 10,000 pixel submillimeter camera for the James Clerk Maxwell Telescope, Proc. SPIE 6275, pp. 62,751E–1

    Google Scholar 

  463. P.A.J. de Korte, J. Beyer, S. Deiker, G.C. Hilton, K.D. Irwin, M. MacIntosh, S.W. Nam, C.D. Reintsema, L.R. Vale, M.E. Huber, Time-division superconducting quantum interference device multiplexer for transition-edge sensors, Rev. Sci. Instr. 74, 3807 (2003)

    Google Scholar 

  464. T.M. Lanting, H.M. Cho, J. Clarke, W.L. Holzapfel, A.T. Lee, M. Lueker, P.L. Richards, M.A. Dobbs, H. Spieler, A. Smith, Frequency-domain multiplexed readout of transition-edge sensor arrays with a superconducting quantum interference device, Appl. Phys. Lett. 86, 112511 (2005)

    Google Scholar 

  465. J.T. Skidmore, J. Gildemeister, A.T. Lee, M.J. Meyers, P.L. Richards, Superconducting bolometer for far-infrared Fourier transform spectroscopy, Appl. Phys. Lett. 82, 469 (2003)

    Google Scholar 

  466. K. I’lin, M. Lindgren, M. Currie, A.D. Semenov, G.N. Goltsman, S.I. Cherednichenko, E.M. Gershenzon, Picosecond hot-electron energy relaxation in NbN superconducting photodetectors, Appl. Phys. Lett. 76, 2752 (2000)

    Google Scholar 

  467. S.E. Schwarz, B.T. Ulrich, Antenna-coupled infrared detectors, J. Appl. Phys. 48, 1870 (1977)

    Google Scholar 

  468. T.L. Hwang, S.E. Schwarz, D.B. Rutledge, Microbolometers for infrared detection, Appl. Phys. Lett. 34, 773 (1979)

    Google Scholar 

  469. D. Rutledge, S. Schwarz, Planar multimode detector arrays for infrared and millimeter-wave applications, IEEE J. Quant. Electron. 17, 407 (1981)

    Google Scholar 

  470. A.J. Steckl, R.D. Nelson, B.T. French, R.A. Gudmundsen, D. Schechter, Application of charge-coupled devices to infrared detection and imaging, Proc. IEEE 63, 67 (1975)

    Google Scholar 

  471. A.W. Lee, Q. Hu, Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array, Opt. Lett. 30, 2563 (2005)

    Google Scholar 

  472. B. Fieque, A. Crastes, O. Legras, J.L. Tissot, in Infrared Technology and Applications XXXI, ed. by B.F. Andresen, G.F. Fulop (2005), MWIR uncooled microbolometer, a way to increase the number of applications, Proc. SPIE 5783, p. 531

    Google Scholar 

  473. N. Oda, M. Sano, K. Sonoda, H. Yoneyama, S. Kurashina, M. Miyoshi, T. Sasaki, I. Hosako, N. Sekine, T. Sudou, S. Ohkubo, in Infrared Technology and Applications XXXVII, ed. by Bjørn F. Andresen, Gabor F. Fulop, Paul R. Norton (2011), Development of Terahertz Focal Plane Arrays and Handy Camera, Proc. SPIE 8012, 80121B

    Google Scholar 

  474. B.N. Behnken, G. Karunasiri, D.R. Chamberlin, P.R. Robrish, J. Faist, Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared microbolometer camera, Opt. Lett. 33, 440 (2008)

    Google Scholar 

  475. E. Burstein, J.W. Davisson, E.E. Bell, W.J. Turner, H.G. Lipson, Infrared photoconductivity due to neutral impurities in germanium, Phys. Rev. 93(1), 65 (1954)

    Google Scholar 

  476. A. Baldereschi, N.O. Lipari, Spherical model of shallow acceptor states in semiconductors, Phys. Rev. B 8, 2697 (1973)

    Google Scholar 

  477. A. Baldereschi, N.O. Lipari, Binding energy of shallow acceptors in group IV elements and III-V compounds, J. Luminescence 12–13, 489 (1976)

    Google Scholar 

  478. E.L. Dereniak, D.G. Crowe, Optical Radiation Detectors (John Wiley, New York, 1984)

    Google Scholar 

  479. R.H. Kingston, Detection of Optical and Infrared Radiation, Springer Series in Optical Sciences, vol. 10 (Springer Verlag, Berlin, 1978)

    Google Scholar 

  480. P.R. Bratt, in Semiconductors and Semimetals (Academic Press, New York, San Francisco, London, 1977), Infrared Detectors II, vol. 12, chap. 2 - Impurity Germanium and Silicon Infrared Detectors, p. 52

    Google Scholar 

  481. N. Hiromoto, M. Saito, H. Okuda, Ge:Ga far-infrared photoconductor with low compensation, Jpn. J. Appl. Phys. 29, 1739 (1990)

    Google Scholar 

  482. F.A. Hegmann, J.B. Williams, B. Cole, M.S. Sherwin, J.W. Beeman, E.E. Haller, Time-resolved photoresponse of a gallium-doped germanium photoconductor using a variable pulse-width terahertz source, Appl. Phys. Lett. 76(3), 262 (2000)

    Google Scholar 

  483. M. Fujiwara, N. Hiromoto, Ge:Ga far-infrared photoconductor with a low Ga concentration of 1 ×1014 cm − 3, Jpn. J. Appl. Phys. 36, 4262 (1997)

    Google Scholar 

  484. E.E. Haller, Advanced far-infrared detectors, Infrared Phys. Technol. 25, 127 (1994)

    Google Scholar 

  485. N.M. Haegel, E.E. Haller, P.N. Luke, Performance and materials aspects of Ge:Be photoconductors, Int. J. Infrared Millimeter Waves 4, 945 (1983)

    Google Scholar 

  486. J.W. Beeman, W.L. Hansen, O.D. Dubon, E.E. Haller, High performance antimony-doped germanium photoconductors, Infrared Phys. 37(7), 715 (1996)

    Google Scholar 

  487. G.D. Peskett, B.V. Rollin, Energy exchange between hot carriers and the lattice in indium antimonide, Proc. Phys. Soc. 82, 467 (1963)

    Google Scholar 

  488. G. Strasser, K. Bochter, M. Witzany, E. Gornik, Improved tunable InSb FIR detectors, Infrared Phys. 32, 439 (1991)

    Google Scholar 

  489. M.A. Kinch, B.V. Rollin, Detection of millimetre and sub-millimetre wave radiation by free carrier absorption in a semiconductor, Brit. J. Appl. Phys. 14, 672 (1963)

    Google Scholar 

  490. E.H. Putley, Indium antimonide submillimeter photoconductive detectors, Appl. Opt. 4(6), 649 (1965)

    Google Scholar 

  491. E.R. Brown, M.J. Wengler, T.G. Phillips, Absolute response and noise equivalent power of cyclotron resonance-assisted InSb detectors at submillimeter wavelengths, J. Appl. Phys. 58, 2051 (1985)

    Google Scholar 

  492. E. Gornik, V. Rosskopf, W. Heiss, Tunable lasers and detectors in the FIR, Infrared Phys. Technol. 36, 113 (1995)

    Google Scholar 

  493. M.F. Kimmitt, G.B.F. Niblett, Infra-red emission from the theta pinch, Proc. Phys. Soc. 82, 938 (1963)

    Google Scholar 

  494. QMC Instruments Ltd., School of Physics and Astronomy, Cardiff University, Cardiff, UK

    Google Scholar 

  495. E.R. Brown, J. Keene, T.G. Phillips, A heterodyne receiver for the submillimeter wavelength region based on cyclotron resonance in indium antimonide at low temperatures, Int. J. Infrared Millimeter Waves 6, 1121 (1985)

    Google Scholar 

  496. J.J. Whalen, C.R. Westgate, Temperature dependence of the conversion loss and response time of InSb mixers, IEEE Trans. Electron Devices 17, 310 (1970)

    Google Scholar 

  497. A. Isayama, N. Isei, S. Ishida, M. Sato, A 20-channel electron cyclotron emission detection system for a grating polychromator in JT-60U, Rev. Sci. Instr. 73, 1165 (2002)

    Google Scholar 

  498. G.E. Stillman, C.M. Wolfe, J.O. Dimmock, in Semiconductors and Semimetals (Academic Press, New York, San Francisco, London, 1977), Infrared Detectors II, vol. 12, chap. 4 – Far-Infrared Photoconductivity in High Purity GaAs, pp. 169–290

    Google Scholar 

  499. G.E. Stillman, C.M. Wolfe, J.O. Dimmock, in Semiconductors and Semimetals (Academic Press, New York, San Francisco, London, 1977), Infrared Detectors II, vol. 12, chap. 4 – Far-Infrared Photoconductivity in High Purity GaAs, p. 215

    Google Scholar 

  500. J. Leotin, in Far-infrared science and technology (1986), Far-infrared photoconductive detectors, Proc. SPIE 666, p. 81

    Google Scholar 

  501. M.F. Kimmitt, G.C. Lopez, J.C. Giles, M. Takai, H.P. Röser, B.T. McGuckin, A. Black, Far-infrared detection with Hg1 − x Cd x Te, Infrared Phys. 25, 767 (1985)

    Google Scholar 

  502. J. Bandaru, J.W. Beeman, E.E. Haller, S. Samperi, N.M. Haegel, Influence of the Sb dopant distribution on far infrared photoconductivity in Ge:Sb blocked impurity band detectors, Infrared Phys. Technol. 43(6), 353 (2002)

    Google Scholar 

  503. N.M. Haegel, S.A. Samperi, A.M. White, Electric field and responsivity modeling for far-infrared blocked impurity band detectors, J. Appl. Phys. 93, 1305 (2003)

    Google Scholar 

  504. J.W. Beeman, S. Goyal, L.A. Reichertz, E.E. Haller, Ion-implanted Ge:B far-infrared blocked-impurity-band detectors, Infrared Phys. Technol. 51(1), 60 (2007)

    Google Scholar 

  505. J.C. Garcia, N.M. Haegel, E.A. Zagorski, Alternate operating mode for long wavelength blocked impurity band detectors, Appl. Phys. Lett. 87, 043502 (2005)

    Google Scholar 

  506. R. Fessenden, Wireless signalling, U. S. Patent 706,740 (1902)

    Google Scholar 

  507. W. Schottky, Über den Ursprung des Superheterodyn-Gedankens, E.N.T., 454 (1925)

    Google Scholar 

  508. J.S. Belrose, Reginald Aubrey Fessenden and the birth of wireless telephony, IEEE Antennas and Propagation Magazine 44, 38 (2002)

    Google Scholar 

  509. A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, A.S. Müller, Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation, IEEE Electron. Device Lett. 31, 674 (2010)

    Google Scholar 

  510. S.A. Maas, Microwave Mixers, 2nd edn. (Artech House, Boston, 1993). ISBN 0-89006-605-1

    Google Scholar 

  511. A.R. Kerr, Suggestions for revised definitions of noise quantities, including quantum effects, IEEE Trans. Microw. Theor. Tech. 47, 325 (1999)

    Google Scholar 

  512. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor contacts (Clarendon Press, Oxford, 1988)

    Google Scholar 

  513. H.-W. Hübers, H.P. Röser, Temperature dependence of the barrier height of Pt/n-GaAs Schottky diodes, J. Appl. Phys. 84, 5326 (1998)

    Google Scholar 

  514. J.H. Werner, H.H. Güttler, Barrier inhomogeneities at Schottky contacts, J. Appl. Phys. 69, 1522 (1991)

    Google Scholar 

  515. A. van der Ziel, Infrared detection and mixing in heavily doped Schottky barrier diodes, J. Appl. Phys. 47, 2059 (1976)

    Google Scholar 

  516. H.P. Röser, R.U. Titz, G.W. Schwaab, M.F. Kimmitt, Current-frequency characteristics of submicron GaAs Schottky barrier diodes with femtofarad capacitances, J. Appl. Phys. 72, 3194 (1992)

    Google Scholar 

  517. T. Nozokido, J.J. Chang, C.M. Mann, T. Suzuki, K. Mizuno, Optimization of a Schottky barrier mixer diode in the submillimeter wave region, Int. J. Infrared Millimeter Waves 15, 1851 (1994)

    Google Scholar 

  518. K.S. Champlin, G. Eisenstein, Cutoff frequency of submillimeter Schottky-barrier diodes, IEEE Trans. Microw. Theory Tech. 26, 31 (1978)

    Google Scholar 

  519. W.C.B. Peatman, T.W. Crowe, Design and fabrication of 0.5 micron GaAs Schottky barrier diodes for low-noise terahertz receiver applications, Int. J. Infrared Millimeter Waves 11, 355 (1990)

    Google Scholar 

  520. A. Aydinli, R.J. Mattauch, The effects of surface treatments on the Pt/n-GaAs Schottky interface, Solid State Electron. 25, 551 (1982)

    Google Scholar 

  521. H.P. Röser, H.-W. Hübers, T.W. Crowe, W.C.B. Peatman, Nanostructure GaAs Schottky diodes for far-infrared heterodyne receivers, Infrared Phys. Technol. 35, 451 (1994)

    Google Scholar 

  522. S.M. Marazita, W.L. Bishop, J.L. Hesler, K. Hui, W.E. Bowen, T.W. Crowe, Integrated GaAs Schottky mixers by spin-on-dielectric wafer bonding, IEEE Trans. Electron Device 47(6), 1152 (2000)

    Google Scholar 

  523. P. Siegel, R.P. Smith, M.C. Gaidis, S. Martin, 2.5-THz GaAs monolithic membrane-diode mixer, IEEE Trans. Microw. Theory Tech. 47(5), 596 (1999)

    Google Scholar 

  524. H.M. Pickett, The Microwave Limb Sounder THz module on Aura, IEEE Trans. Geoscience Remote Sensing 44, 1122 (2006)

    Google Scholar 

  525. A.H. Dayem, R.J. Martin, Quantum interaction of microwave radiation with tunnelling between superconductors, Phys. Rev. Lett. 8, 246 (1992)

    Google Scholar 

  526. P.K. Tien, J.P. Gordon, Multiphonton process observed in the interaction of microwave fields with the tunnelling between superconductor films, Phys. Rev. 129, 647 (1963)

    Google Scholar 

  527. J.R. Tucker, M.J. Feldman, Quantum detection at millimeter wavelengths, Rev. Mod. Phys. 57, 1055 (1985)

    Google Scholar 

  528. B.B. Hu, X.C. Zhang, D.H. Auston, P.R. Smith, Free-space radiation from electro-optic crystals, Appl. Phys. Lett. 56, 506 (1990)

    Google Scholar 

  529. M. Bin, M.C. Gaidis, J. Zmuidzinas, T.G. Phillips, H.G. LeDuc, Low-noise 1 THz niobium superconducting tunnel junction mixer with normal metal tuning circuit, Appl. Phys. Lett. 68, 1714 (1996)

    Google Scholar 

  530. B.D. Jackson, A.M. Baryshev, G. de Lange, J.R. Gao, S. Shitov, N.N. Iossad, T.M. Klapwijk, Low-noise 1 THz superconductor-insulator-superconductor mixer incorporating a NbTiN/SiO2/Al tuning circuit, Appl. Phys. Lett. 79, 436 (2001)

    Google Scholar 

  531. A.R. Kerr, Some fundamental and practical limits on broadband matching to capacitive devices, and the implications for SIS mixer design, IEEE Trans. Microw. Theory Tech. 43, 2 (1995)

    Google Scholar 

  532. M.C. Gaidis, H.G. LeDuc, M. Bin, D. Miller, J.A. Stern, J. Zmuidzinas, Characterization of low-noise quasi-optical SIS mixers for the submillimeter band, IEEE Trans. Microw. Theor. Tech. 44, 1130 (1996)

    Google Scholar 

  533. J. Kawamura, D. Miller, J. Chen, J. Zmuidzinas, B. Bumble, H.G. LeDuc, J.A. Stern, Very high-current-density Nb/AlN/Nb tunnel junctions for low-noise submillimeter mixers, Appl. Phys. Lett. 76(15), 2119 (2000)

    Google Scholar 

  534. G.N. Goltsman, B.S. Karasik, O. Okunev, A. Dzadanov, E.M. Gershenzon, H. Ekström, S. Jacobsson, E.L. Kollberg, NbN hot electron superconducting mixers for 100 GHz operation, IEEE Trans. Appl. Superconductivity 5, 3065 (1995)

    Google Scholar 

  535. R. Nebosis, A.D. Semenov, Y. Gousev, K.F. Renk, in Proc. of the 7th Int. Symp. on Space Terahertz Technology (Charlottesville, 1996), Rigorous analysis of a superconducting hot-electron bolometer mixer: theory and comparison with experiment, p. 601

    Google Scholar 

  536. A.D. Semenov, G.N. Goltsman, R. Sobolewski, Hot-electron effect in superconductors and its applications for radiation sensors, Semicond. Sci. Technol. 15, R1 (2002)

    Google Scholar 

  537. W. Skocpol, M.R. Beasly, M. Tinkham, Self-heating hotspots in superconducting thin-film microbridges, J. Appl. Phys. 45, 4054 (1974)

    Google Scholar 

  538. D.W. Floet, E. Miedema, T.M. Klapwijk, J.R. Gao, Hotspot mixing: A framework for heterodyne mixing in superconducting hot-electron bolometers, Appl. Phys. Lett. 74, 433 (1999)

    Google Scholar 

  539. H. Merkel, P. Khosropanah, P. Yagoubov, E. Kollberg, A hot-spot mixer model for phonon-cooled NbN hot electron bolometric mixers, IEEE Trans. Appl. Superconductivity 9, 4201 (1999)

    Google Scholar 

  540. A.D. Semenov, H.-W. Hübers, Bandwidth of a hot-electron bolometer mixer according to the hotspot model, IEEE Trans. Appl. Superconductivity 11, 196 (2001)

    Google Scholar 

  541. E.K. Hollmann, A.G. Zaitsev, Optimal magnetron sputtering parameters for superconducting NbN thin film deposition, Vacuum 44, 847 (1993)

    Google Scholar 

  542. N. Perrin, C. Vanneste, Response of superconducting films to a periodic optical radiation, Phys. Rev. B 28, 5150 (1983)

    Google Scholar 

  543. B. Voronov, G. Goltsman, E. Gershenzon, L. Seidman, T. Gubkina, V. Siomash, Superconductive properties of NbN ultrathin films on different substrates, Fiz. Cim. Tekh. 7, 1097 (1994)

    Google Scholar 

  544. K. Ilin, R. Schneider, D. Gerthsen, A. Engel, H. Bartolf, A. Schilling, A. Semenov, H.-W. Huebers, B. Freitag, M. Siegel, Ultra-thin NbN films on Si: crystalline and superconducting properties, J. Phys.: Conf. Series 97, 012045 (2008)

    Google Scholar 

  545. A.D. Semenov, H.-W. Hübers, J. Schubert, G.N. Goltsman, A.I. Elantiev, B.M. Voronov, E.M. Gershenzon, Design and performance of the lattice-cooled hot-electron terahertz mixer, J. Appl. Phys. 88, 6758 (2000)

    Google Scholar 

  546. A.D. Semenov, H.-W. Hübers, H. Richter, M. Birk, M. Krocka, U. Mair, K. Smirnov, G. Goltsman, B.V. Voronov, 2.5 THz heterodyne receiver with NbN hot-electron bolometer, Phys. C 372–376, 448 (2002)

    Google Scholar 

  547. H.A. Gebbie, Fourier transform versus grating spectroscopy, Appl. Opt. 8(3), 501 (1969)

    Google Scholar 

  548. P.B. Fellgett, Ph.D. thesis, University of Cambridge, UK (1951). See also: Infrared Phys. 24, 95–98 (1984)

    Google Scholar 

  549. P. Jacquinot, New developments in interference spectroscopy, Rep. Prog. Phys. 23, 267 (1960)

    Google Scholar 

  550. C.A. Burrus, W. Gordy, Submillimeter wave spectroscopy, Phys. Rev. 93(4), 897 (1954)

    Google Scholar 

  551. P. Helminger, F.C.D. Lucia, W. Gordy, Extension of microwave absorption spectroscopy to 0.37-mm wavelength, Phys. Rev. Lett. 25, 1397 (1970)

    Google Scholar 

  552. B.J. Drouin, F.W. Maiwald, J.C. Pearson, Application of cascaded frequency multiplication to molecular spectroscopy, Rev. Sci. Instr. 76, 093113 (2005)

    Google Scholar 

  553. A.F. Krupnov, in Modern Aspects of Microwave Spectroscopy, ed. G.W. Chantry (Academic Press, New York, 1979), chap. 4 - Modern submillimetre microwave scanning spectroscopy, p. 217–256

    Google Scholar 

  554. B. Gorshunov, A. Volkov, I. Spektor, A. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, A. Loidl, Terahertz BWO-spectroscopy, Int. J. Infrared Millim. Waves 26, 1217 (2005)

    Google Scholar 

  555. K.M. Evenson, D.A. Jennings, M.D. Vanek, in Frontiers of laser spectroscopy of gases (Kluwer Academic Publishers, Dordrecht, 1988), chap. Tunable far infrared laser spectroscopy, pp. 43–51

    Google Scholar 

  556. H.I. Ewen, E.M. Purcell, Radiation from galactic hydrogen at 1,420 Mc/sec, Nature 168, 356 (1951)

    Google Scholar 

  557. C.A. Muller, J.H. Oort, The interstellar hydrogen line at 1,420 Mc/sec, and an estimate of galactic rotation, Nature 168, 357 (1951)

    Google Scholar 

  558. C.M. Walmsley, C. Bertout, F. Combes, A. Ferrara, T. Forveille, T. Guillot, A. Jones, S. Shore (eds.), Astronomy & Astrophysics special feature: Herschel: the first science highlights, A&A 518 (2010)

    Google Scholar 

  559. R.P. Madden, J. Strong, Appendix P in: Concepts in Classical Optics (Freeman and Co., San Francisco and London, 1958)

    Google Scholar 

  560. S. Jovicevic, S. Sesnic, Diffraction of a parallel- and perpendicular-polarized wave from an echelette grating, J. Opt. Soc. Am. 62, 865 (1972)

    Google Scholar 

  561. G.W. Stroke, Attainment of high efficiencies in blazed optical gratings by avoiding polarisation in the diffracted light, Phys. Lett. 5, 45 (1963)

    Google Scholar 

  562. H. Czerny, A.F. Turner, Über den Astigmatismus bei Spiegelspektrometern, Z. Physik 61, 792 (1930)

    Google Scholar 

  563. H. Ebert, G.H. Wiedemann ed., Zwei Formen von Spectrographen, Annalen der Physik und Chemie (Wied. Ann.) 38, 489 (1889)

    Google Scholar 

  564. W.G. Fastie, A small plane grating monochromator, J. Opt. Soc. Am. 42, 641 (1952)

    Google Scholar 

  565. A. Girard, Possibilités offertes par un spectrometre a modulation sélective, J. Phys. Colloques 28, C2 (1967)

    Google Scholar 

  566. M. Harwit, P.G. Phillips, T. Fine, N.J.A. Sloane, Doubly multiplexed dispersive spectrometers, Appl. Opt. 9(5), 1149 (1970)

    Google Scholar 

  567. M.E. Gehm, S.T. McCain, N.P. Pitsianis, D.J. Brady, P. Potuluri, M.E. Sullivan, Static two-dimensional aperture coding for multimodal, multiplex spectroscopy, Appl. Opt. 45(13), 2965 (2006)

    Google Scholar 

  568. A.A. Michelson, XXX. On the application of interference methods to spectroscopic measurements.–II, Phil. Mag. Series 5 34, 280 (1892)

    Google Scholar 

  569. L. Rayleigh, XLVII. On the interference bands of approximately homogeneous light; in a letter to Prof. A. Michelson, Phil. Mag. 34, 407 (1892)

    Google Scholar 

  570. H.F. Talbot, LXXVI. Facts relating to optical science. No. IV, Phil. Mag. 9, 401 (1836)

    Google Scholar 

  571. Q. Wu, C.A. Werley, K.H. Lin, A. Dorn, M.G. Bawendi, K.A. Nelson, Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide, Opt. Express 17(11), 9219 (2009)

    Google Scholar 

  572. H.L. Kung, A. Bhatnagar, D.A.B. Miller, Transform spectrometer based on measuring the periodicity of Talbot self-images, Opt. Lett. 26(21), 1645 (2001)

    Google Scholar 

  573. D.W. van der Weide, J. Murakowski, F. Keilmann, Gas-absorption spectroscopy with electronic terahertz techniques, IEEE Trans. Microw. Theory Tech. 48(4), 740 (2000)

    Google Scholar 

  574. B.I. Greene, J.F. Federici, D.R. Dykaar, R.R. Jones, P.H. Bucksbaum, Interferometric characterization of 160 fs far-infrared light pulses, Appl. Phys. Lett. 59, 893 (1991)

    Google Scholar 

  575. S.E. Ralph, D. Grischkowsky, THz spectroscopy and source characterization by optoelectronic interferometry, Appl. Phys. Lett. 60, 1070 (1992)

    Google Scholar 

  576. C. Karadi, S. Jauhar, L.P. Kouwenhoven, K. Wald, J. Orenstein, P.L. McEuen, Dynamic response of a quantum point contact, J. Opt. Soc. Am. B 11, 2566 (1994)

    Google Scholar 

  577. A. Schliesser, M. Brehm, F. Keilmann, D.W. van der Weide, Frequency-comb infrared spectrometer for rapid, remote chemical sensing, Opt. Express 13(22), 9029 (2005)

    Google Scholar 

  578. T. Ganz, H.G. von Ribbeck, M. Brehm, F. Keilmann, Compact frequency-comb Fourier-transform infrared spectrometer, Opt. Comm. 281, 3827 (2008)

    Google Scholar 

  579. S. Yokoyama, R. Nakamura, M. Nose, T. Araki, T. Yasui, Terahertz spectrum analyzer based on a terahertz frequency comb, Opt. Express 16(17), 13052 (2008)

    Google Scholar 

  580. D.S. Yee, Y. Jang, Y. Kim, D.C. Seo, Terahertz spectrum analyzer based on frequency and power measurement, Opt. Lett. 35(15), 2532 (2010)

    Google Scholar 

  581. M.N. Afsar, K.J. Button, Millimeter and submillimeter wave measurements of complex optical and dielectric parameters of materials, Int. J. Infrared Millim. Waves 2(5), 1029 (1981)

    Google Scholar 

  582. H. Jamshidi, T.J. Parker, A two-beam interferometer for dispersive reflection spectroscopy of solids in the far infrared at temperatures between 4 and 300K, Int. J. Infrared Millim. Waves 4(4), 681 (1983)

    Google Scholar 

  583. J.R. Birch, Dispersive Fourier transform spectroscopy, Mikrochim. Acta III, 105 (1987)

    Google Scholar 

  584. D.H. Martin, E. Puplett, Polarised interferometric spectrometry for the millimetre and submillimetre spectrum, Infrared Phys. 10, 105 (1969)

    Google Scholar 

  585. D.H. Martin, K.J. Button (ed.), in Infrared and Millimeter Waves (Academic Press, New York, London, Paris, San Diego, San Francisco, Sao Paulo, Sydney, Tokyo, Toronto, 1982), vol. 6: Systems and Components, chap. 2 - Polarizing (Martin-Puplett) interferometric spectrometers for the near- and submillimeter spectra pp. 65–148

    Google Scholar 

  586. D.K. Lambert, P.L. Richards, Martin-puplett interferometer: an analysis, Appl. Opt. 17, 1595 (1978)

    Google Scholar 

  587. D.H. Martin, J.C.G. Lesurf, Submillimetre-wave optics, Infrared Phys. 18, 405 (1978)

    Google Scholar 

  588. J.C.G. Lesurf, Gaussian optics and the design of Martin-Pupplett diplexers, Infrared Phys. 21, 383 (1981)

    Google Scholar 

  589. J.C.G. Lesurf, Gaussian beam-mode optics and the design of millimeter-wave Martin-Puplett instruments, Infrared Phys. 28, 129 (1988)

    Google Scholar 

  590. R. Ulrich, K.F. Renk, L. Genzel, Tunable submillimeter interferometers of the Fabry-Perot type, IEEE Trans. Microw. Theor. Tech. 11, 363 (1963)

    Google Scholar 

  591. K.F. Renk, J. Betz, A. Prückle, B. Brunner, H.Langfeller, Use of high T c superconductors for far-infrared Fabry-Perot resonators, Appl. Phys. Lett. 57, 2148 (1990)

    Google Scholar 

  592. E.V. Pechen, S. Vent, B. Brunner, A. Prückle, S. Lipp, G. Lindner, O. Alexandrov, J. Schützmann, K.F. Renk, Far-infrared Fabry-Perot resonator with high T c YBa2Cu3O7 − δ films on silicon plates, Appl. Phys. Lett. 61, 1980 (1992)

    Google Scholar 

  593. A. Poglitsch, J.W. Beeman, N. Geis, R. Genzel, M. Haggerty, E.E. Haller, J. Jackson, M. Rumitz, G.J. Stacey, C.H. Townes, The MPE/UCB far-infrared imaging Fabry-Perot interferometer (FIFI), Int. J. Infrared Millim. Waves 12, 859 (1991)

    Google Scholar 

  594. T.D. Graauw, in Proc. of the conference “The universe as seen by ISO”, P. Cox and M.F. Kessler (eds.), (ESA, Paris, France, 1999), Summary of ISO SWS performance and science highlights, vol. ESA SP-427, pp. 31–38

    Google Scholar 

  595. P.E. Clegg on behalf of the LWS consortium, in Proc. of the conference “The universe as seen by ISO”, P. Cox and M.F. Kessler (eds.) (ESA, Paris, France, 1999), The ISO Long-Wavelength Spectrometer: description, performance and highlights, vol. ESA SP-427, pp. 39–43

    Google Scholar 

  596. R. Ulrich, T.J. Bridges, M.A. Pollack, Variable metal mesh coupler for far infrared lasers, Appl. Opt. 9, 2511 (1970)

    Google Scholar 

  597. B.M. Oliver, Time domain spectroscopy, Hewlett-Packard J. 15, 1 (1964)

    Google Scholar 

  598. H. Fellner-Feldegg, Measurement of dielectrics in the time domain, J. Phys. Chem. 73, 616 (1969)

    Google Scholar 

  599. D.E. Spence, P.N. Kean, W. Sibbett, 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser, Opt. Lett. 16(1), 42 (1991)

    Google Scholar 

  600. A. Stingl, M. Lenzner, C. Spielmann, F. Krausz, R. Szipöcs, Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser, Opt. Lett. 20(6), 602 (1995)

    Google Scholar 

  601. J.N. Eckstein, A.I. Ferguson, T.W. Hänsch, High-resolution two-photon spectroscopy with picosecond light pulses, Phys. Rev. Lett. 40(13), 847 (1978)

    Google Scholar 

  602. D.H. Auston, K.P. Cheung, J.A. Valdmanis, D.A. Kleinman, Cherenkov radiation from femtosecond optical pulses in electro-optic media, Phys. Rev. Lett. 53(16), 1555 (1984)

    Google Scholar 

  603. P.U. Jepsen, R.H. Jacobsen, S.R. Keiding, Generation and detection of terahertz pulses from biased semiconductor antennas, J. Opt. Soc. Am. B 13(11), 2424 (1996)

    Google Scholar 

  604. Q. Wu, F.G. Sun, P. Campbell, X.C. Zhang, Dynamic range of an electro-optic field sensor and its imaging applications, Appl. Phys. Lett. 68, 3224 (1996)

    Google Scholar 

  605. C. Fattinger, D. Grischkowsky, Point source terahertz optics, Appl. Phys. Lett. 53, 1480 (1988)

    Google Scholar 

  606. C. Fattinger, D. Grischkowsky, Terahertz beams, Appl. Phys. Lett. 54, 490 (1989)

    Google Scholar 

  607. M. van Exter, C. Fattinger, D. Grischkowsky, Terahertz time-domain spectroscopy of water vapor, Opt. Lett. 14(20), 1128 (1989)

    Google Scholar 

  608. P.C.M. Planken, C.E.W.M. van Rijmenam, R.N. Schouten, Opto-electronic pulsed THz systems, Semicond. Sci. Technol. 20(7), S121 (2005)

    Google Scholar 

  609. A. Leitenstorfer, S. Hunsche, J. Shah, M.C. Nuss, W.H. Knox, Femtosecond charge transport in polar semiconductors, Phys. Rev. Lett. 82(25), 5140 (1999)

    Google Scholar 

  610. R. Huber, A. Brodschelm, F. Tauser, A. Leitenstorfer, Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz, Appl. Phys. Lett. 76(22), 3191 (2000)

    Google Scholar 

  611. S. Kono, M. Tani, P. Gu, K. Sakai, Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses, Appl. Phys. Lett. 77, 4104 (2000)

    Google Scholar 

  612. S. Kono, M. Tani, K. Sakai, Ultrabroadband photoconductive detection: Comparison with free-space electro-optic sampling, Appl. Phys. Lett. 79(7), 898 (2001)

    Google Scholar 

  613. S. Kono, M. Tani, K. Sakai, Coherent detection of mid-infrared radiation up to 60 THz with an LT-GaAs photoconductive antenna, IEE Proc. Optoelectron. 149, 105 (2002)

    Google Scholar 

  614. I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, H. Yasuda, in T-ray imaging, sensing, and retection, ed. by D. Abbott, X.C. Zhang (2007), At the dawn of a new era in terahertz technology, Proc. IEEE 95, pp. 1611–1623

    Google Scholar 

  615. K. Reimann, R.P. Smith, A.M. Weiner, T. Elsaesser, M. Woerner, Direct field-resolved detection of terahertz transients with amplitudes of megavolts per centimeter, Opt. Lett. 28, 471 (2003)

    Google Scholar 

  616. F. Junginger, A. Sell, O. Schubert, B. Mayer, D. Brida, M. Marangoni, G. Cerullo, A. Leitenstorfer, R. Huber, Single-cycle multiterahertz transients with peak fields above 10 MV/cm, Opt. Lett. 35, 2645 (2010)

    Google Scholar 

  617. C. Janke, M. Först, M. Nagel, H. Kurz, A. Bartels, Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors, Opt. Lett. 30(11), 1405 (2005)

    Google Scholar 

  618. T. Yasui, E. Saneyoshi, T. Araki, Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition, Appl. Phys. Lett. 87, 061101 (2005)

    Google Scholar 

  619. A. Bartels, F. Hudert, C. Janke, T. Dekorsy, K. Köhler, Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line, Appl. Phys. Lett. 88, 041117 (2006)

    Google Scholar 

  620. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, T. Dekorsy, Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling, Rev. Sci. Instrum. 78, 035107 (2007)

    Google Scholar 

  621. T. Bartel, P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, Generation of single-cycle THz transients with high electric-field amplitudes, Opt. Lett. 30(20), 2805 (2005)

    Google Scholar 

  622. I.C. Ho, X. Guo, X.C. Zhang, Design and performance of reflective terahertz air-based-coherent-detection for time-domain spectroscopy, Opt. Express 18, 2872 (2010)

    Google Scholar 

  623. T.A. Liu, M. Tani, M. Nakajima, M. Hangyo, C.L. Pan, Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs, Appl. Phys. Lett. 83(7), 1322 (2003)

    Google Scholar 

  624. M. Tani, M. Herrmann, K. Sakai, Generation and detection of terahertz pulsed radition with photoconductive antennas and its application to imaging, Meas. Sci. Technol. 13, 1739–1745 (2002)

    Google Scholar 

  625. A. Dreyhaupt, S. Winnerl, M. Helm, T. Dekorsy, Optimum excitation conditions for the generation of high-electric-field terahertz radiation from an oscillator-driven photoconductive device, Opt. Lett. 31, 1546 (2006)

    Google Scholar 

  626. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, M. Schell, All-fiber terahertz time-domain spectrometer operating at 1.5 μm telecom wavelengths, Opt. Express 16, 9565 (2008)

    Google Scholar 

  627. Q. Chen, M. Tani, Z. Jiang, X.-C. Zhang, in Nonlinear Optics: Materials, Fundamentals and Applications, ed. by T. Li, vol. 46, OSA Trends in Optics and Photonics (2000), Electro-optic THz transceiver, p. MC2

    Google Scholar 

  628. K. Liu, J. Xu, X.C. Zhang, GaSe crystals for broadband terahertz wave detection, Appl. Phys. Lett. 85(6), 863 (2004)

    Google Scholar 

  629. Z. Jiang, X.C. Zhang, Single-shot spatiotemporal terahertz field imaging, Opt. Lett. 23(14), 1114 (1998)

    Google Scholar 

  630. Z. Jiang, X.C. Zhang, Electro-optic measurement of THz field pulses with a chirped optical beam, Appl. Phys. Lett. 72(16), 1945 (1998)

    Google Scholar 

  631. P.U. Jepsen, D.G. Cooke, M. Koch, Terahertz spectroscopy and imaging - modern techniques and applications, Laser Photonics Rev. 5, 124 (2010)

    Google Scholar 

  632. A.S. Pine, R.D. Suenram, E.R. Brown, K.A. McIntosh, A terahertz photomixing spectrometer: application to SO2 self broadening, J. Mol. Spectrosc. 175, 37 (1996)

    Google Scholar 

  633. S. Matsuura, P. Chen, G. Blake, J. Pearson, H.M. Pickett, A tunable cavity-locked diode laser source for terahertz photomixing, IEEE Trans. Microw. Theory Techn. 48, 380 (2000)

    Google Scholar 

  634. I.R. Medvedev, M. Behnke, F.C.D. Lucia, Fast analysis of gases in the submillimeter/terahertz with “absolute” specificity, Appl. Phys. Lett. 86, 154105 (2005)

    Google Scholar 

  635. G. Winnewisser, A.F. Krupnov, M.Y. Tretyakov, M. Liedtke, F. Lewen, A.H. Saleck, R. Schieder, A.K. Shkaev, S.V. Volokhov, Precision broadband spectroscopy in the terahertz region, J. Mol. Spectrosc. 169, 294 (1994)

    Google Scholar 

  636. S.P. Belov, S. Urban, G. Winnewisser, Hyperfine structure of rotation-inversion levels in the excited ν2 state of ammonia, J. Mol. Spectros. 189(1), 1 (1998)

    Google Scholar 

  637. D.T. Petkie, T. M.Goyette, R.P.A. Bettens, S.P. Belov, S. Albert, P. Helminger, F.C. DeLucia, A fast scan submillimeter spectroscopic technique, Rev. Sci. Instrum. 68, 1675 (1997)

    Google Scholar 

  638. M. Born, E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1986)

    Google Scholar 

  639. A.A. Volkov, Y.G. Goncharov, G.V. Kozlov, S.P. Lebedev, A.M. Prokhorov, Dielectric measurements in the submillimeter wavelength region, Infrared Phys. 25(1/2), 369 (1985)

    Google Scholar 

  640. R. Gendriesch, F. Lewen, G. Winnewisser, J. Hahn, Precision broadband spectroscopy near 2 THz: frequency-stabilized laser sideband spectrometer with backward-wave oscillators, J. Mol. Spectrosc. 203, 205 (2000)

    Google Scholar 

  641. D. Boucher, R. Bocquet, J. Burie, W. Chen, A far-infrared heterodyne sidebands spectrometer, J. Phys. III 4, 1467 (1994)

    Google Scholar 

  642. M. Heiblum, S. Wang, J.R. Whinnery, T.K. Gustafson, Characteristics of integrated MOM junctions at dc and optical frequencies, IEEE J. Quantum Electron. 14, 159 (1978)

    Google Scholar 

  643. K.M. Evenson, M. Inguscio, D.A. Jennings, Point contact diode at laser frequencies, J. Appl. Phys. 57, 956 (1985)

    Google Scholar 

  644. T.D. Varberg, K.M. Evenson, Laser spectroscopy of carbon monoxide: a frequency reference for the far infrared, IEEE Trans. Instrumentation Measurement 42, 412 (1993)

    Google Scholar 

  645. T.D. Varberg, K.M. Evenson, Accurate far-infrared rotational frequencies of carbon monoxide, Astrophys. J. 385, 763 (1992)

    Google Scholar 

  646. P. de Natale, L. Lorini, M. Inguscio, G.D. Lonardo, L. Fusina, P.A.R. Ade, A.G. Murray, Improved sensitivity of tunable far-infrared spectroscopy: application to the detection of HBr in the v = 1 state, Appl. Opt. 36, 5822 (1997)

    Google Scholar 

  647. G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J.F. Lampin, D. Lippens, Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz, Appl. Phys. B 79, 725 (2004)

    Google Scholar 

  648. S. Matsuura, M. Tani, H. Abe, K. Sakai, H. Ozeki, S. Saito, High-resolution terahertz spectroscopy by a compact radiation source based on photomixing with diode lasers in a photoconductive antenna, J. Mol. Spectrosc. 187, 97 (1998)

    Google Scholar 

  649. R.T. Boreiko, A.L. Betz, J. Zmuidzinas, Heterodyne spectroscopy of the 158 micron CII line in M42, Astrophys. J. 325, L47 (1988)

    Google Scholar 

  650. R.T. Boreiko, A.L. Betz, Heterodyne spectroscopy of the 63 μm OI line in M42, Astrophys. J. 464, L83 (1996)

    Google Scholar 

  651. J. Mees, S. Crewell, H. Nett, G. de Lange, H.V. de Stadt, J. Kuipers, R.A. Panhuyzen, ASUR-an airborne SIS receiver for atmospheric measurements of trace gases at 625 to 760 GHz, IEEE Trans. Microw. Theory Techn. 43, 2543 (1995)

    Google Scholar 

  652. S. Gulkis, M. Allen, C. Backus, G. Beaudin, N. Biver, D. Bockelee-Morvan, J. Crovisier, D. Despois, P. Encrenaz, M. Frerking, M. Hofstadter, P. Hartogh, W. Ip, M. Janssen, L. Kamp, T. Koch, E. Lellouch, I. Mann, D. Muhleman, H. Rauer, P. Schloerb, T. Spilker, Remote sensing of a comet at millimeter and submillimeter wavelengths from an orbiting spacecraft, Planet. Space Sci. 55, 1050 (2007)

    Google Scholar 

  653. R. Blundell, C.Y.E. Tong, Submillimeter receivers for radio astronomy, Proc. IEEE 80, 1702 (1992)

    Google Scholar 

  654. J.E. Carlstrom, J. Zmuidzinas, in Reviews of Radio Science 1993-1996, ed. by W.R. Stone (Oxford University Press, Oxford U.K., 1996), chap. Millimeter and submillimeter techniques, pp. 839–882

    Google Scholar 

  655. H.-W. Hübers, Terahertz heterodyne receivers, IEEE Sel. Top. Quant. Electron. 14, 378 (2008)

    Google Scholar 

  656. D.W. Allan, Statistics of atomic frequency standards, Proc. IEEE 54(2), 221 (1966)

    Google Scholar 

  657. R. Schieder, G. Rau, B. Vowinkel, in Instrumentation for Submillimeter Spectroscopy, Characterization and measurement of system stability, Proc. SPIE 598, 189 (1985)

    Google Scholar 

  658. R. Schieder, C. Kramer, Optimization of heterodyne observations using Allan variance measurements, Astron. Astrophys. 373/2, 746 (2001)

    Google Scholar 

  659. J.W. Kooi, G. Chattopadhyay, M. Thielmann, T.G. Phillips, R. Schieder, Noise stability of SIS receivers noise stability, 21, 689 (2000)

    Google Scholar 

  660. J.W. Kooi, J.J.A. Baselmans, A. Baryshev, R. Schieder, M. Hajenius, J.R. Gao, T.M. Klapwijk, B. Voronov, G. Goltsman, Stability of heterodyne terahertz receivers, J. Appl. Phys. 100, 064904 (2006)

    Google Scholar 

  661. H. Penfield, in Methods in Experimental Physics, ed. by M.L. Meeks (Academic Press, New York, 1976), vol. 12, part. B, chap. 3.4. - Multichannel-Filter Spectrometers, pp. 266–279

    Google Scholar 

  662. J. Horn, O. Siebertz, F. Schmülling, C. Kunz, R. Schieder, G. Winnewisser, A 4x1 GHz array acousto-optical spectrometer, Exp. Astron. 9, 17 (1999)

    Google Scholar 

  663. G.J. Melnick, J.R. Stauffer, M.L.N. Ashby, E.A. Bergin, G. Chin, N.R. Erickson, P.F. Goldsmith, M. Harwit, J.E. Howe, S.C. Kleiner, D.G. Koch, D.A. Neufeld, B.M. Patten, R. Plume, R. Schieder, R.L. Snell, V. Tolls, Z. Wang, G. Winnewisser, Y.F. Zhang, The Submillimeter Wave Astronomy Satellite: Science objectives and instrument description, Astrophys. J. 539, L77 (2000)

    Google Scholar 

  664. U. Frisk, M. Hagström, J. Ala-Laurinaho, S. Andersson, J.C. Berges, J.P. Chabaud, M. Dahlgren, A. Emrich, H.G. Florn, G. Florin, M. Fredrixon, T. Gaier, R. Haas, T. Hirvonen, A. Hjalmarsson, B. Jakobsson, P. Jukkala, P.S. Kildal, E. Kollberg, J. Lassing, A. Lecacheux, P. Lehikoinen, A. Lehto, J. Mallat, C. Marty, D. Michet, J. Narbonne, M. Nexon, M. Olberg, A.O.H. Olofsson, G. Olofsson, A. Origne, M. Petersson, P. Piironen, R. Pons, D. Pouliquen, I. Ristorcelli, C. Rosolen, G. Rouaix, A.V. Räisänen, G. Serra, F. Sjöberg, L. Stenmark, S. Torchinsky, J. Tuovinen, C. Ullberg, E. Vinterhav, N. Wadefalk, H. Zirath, P. Zimmermann, R. Zimmermann, The Odin satellite I. Radiometer design and test, Astron. Astrophys. 402(3), L27 (2003)

    Google Scholar 

  665. A. Emrich, in Proc. ESA Symp. The Far InfraRed and Submillimetre Universe (ESA, Grenoble, 1997), vol. ESA SP401, Autocorrelation spectrometers for space borne (sub)millimeter spectroscopy, pp. 361–364

    Google Scholar 

  666. A.I. Harris, in Proc. Conf. on Millimeter and Submillimeter Detectors for Astronomy (Waikoloa, 2002), Heterodyne spectrometers with very wide bandwidths, Proc. SPIE 4855, pp. 279–289

    Google Scholar 

  667. G. Villanueva, P. Hartogh, The high resolution chirp transform spectrometer for the SOFIA-GREAT instrument, Exp. Astron. 18, 77 (2004)

    Google Scholar 

  668. B. Klein, S.D. Philipp, I. Krämer, C. Kasemann, R. Güsten, K.M. Menten, The APEX digital Fast Fourier Transform spectrometer, Astron. Astrophys. 454(2), L29 (2006)

    Google Scholar 

  669. J.W. Waters, L. Froidevaux, R.S. Harwood, R.F. Jarnot, H.M. Pickett, W.G. Read, P.H. Siegel, R.E. Cofield, M.J. Filipiak, D.A. Flower, J.R. Holden, G.K. Lau, N.J. Livesey, G.L. Manney, H.C. Pumphrey, M.L. Santee, D.L. Wu, D.T. Cuddy, R.R. Lay, M.S. Loo, V.S. Perun, M.J. Schwartz, P.C. Stek, R.P. Thurstans, M.A. Boyles, K.M. Chandra, M.C. Chavez, G.S. Chen, B.V. Chudasama, R. Dodge, R.A. Fuller, M.A. Girard, J.H. Jiang, Y. Jiang, B.W. Knosp, R.C. LaBelle, J.C. Lam, K.A. Lee, D. Miller, J.E. Oswald, N.C. Patel, D.M. Pukala, O. Quintero, D.M. Scaff, W.V. Snyder, M.C. Tope, P.A. Wagner, M.J. Walch, The Earth Observing Microwave Limb Sounder (EOS MLS) on the Aura satellite, IEEE Trans. Geosci. Rem. Sens. 44(5), 1075 (2006)

    Google Scholar 

  670. E.A. Bergin, T.G. Phillips, C. Comito, N.R. Crockett, D.C. Lis, P. Schilke, S. Wang, T.A. Bell, G.A. Blake, B. Bumble, E. Caux, S. Cabrit, C. Ceccarelli, J. Cernicharo, F. Daniel, T. de Graauw, M.L. Dubernet, M. Emprechtinger, P. Encrenaz, E. Falgarone, M. Gerin, T.F. Giesen, J.R. Goicoechea, P.F. Goldsmith, H. Gupta, P. Hartogh, F.P. Helmich, E. Herbst, C. Joblin, D. Johnstone, J.H. Kawamura, W.D. Langer, W.B. Latter, S.D. Lord, S. Maret, P.G. Martin, G.J. Melnick, K.M. Menten, P. Morris, H.S.P. Müller, J.A. Murphy, D.A. Neufeld, V. Ossenkopf, L. Pagani, J.C. Pearson, M. Pérault, R. Plume, P. Roelfsema, S.L. Qin, M. Salez, S. Schlemmer, J. Stutzki, A.G.G.M. Tielens, N. Trappe, F.F.S. van der Tak, C. Vastel, H.W. Yorke, S. Yu, J. Zmuidzinas, Herschel observations of EXtra-Ordinary Sources (HEXOS): the present and future of spectral surveys with Herschel/HIFI, A&A 521, L20 (2010)

    Google Scholar 

  671. T. de Graauw, F.P. Helmich, T.G. Phillips, J. Stutzki, E. Caux, N.D. Whyborn, P. Dieleman, P.R. Roelfsema, H. Aarts, R. Assendorp, R. Bachiller, W. Baechtold, A. Barcia, D.A. Beintema, V. Belitsky, A.O. Benz, R. Bieber, A. Boogert, C. Borys, B. Bumble, P. Cas, M. Caris, P. Cerulli-Irelli, G. Chattopadhyay, S. Cherednichenko, M. Ciechanowicz, O. Coeur-Joly, C. Comito, A. Cros, A. de Jonge, G. de Lange, B. Delforges, Y. Delorme, T. den Boggende, J.M. Desbat, C. Diez-González, A.M. di Giorgio, L. Dubbeldam, K. Edwards, M. Eggens, N. Erickson, J. Evers, M. Fich, T. Finn, B. Franke, T. Gaier, C. Gal, J.R. Gao, J.D. Gallego, S. Gauffre, J.J. Gill, S. Glenz, H. Golstein, H. Goulooze, T. Gunsing, R. Güsten, P. Hartogh, W.A. Hatch, R. Higgins, E.C. Honingh, R. Huisman, B.D. Jackson, H. Jacobs, K. Jacobs, C. Jarchow, H. Javadi, W. Jellema, M. Justen, A. Karpov, C. Kasemann, J. Kawamura, G. Keizer, D. Kester, T.M. Klapwijk, T. Klein, E. Kollberg, J. Kooi, P.P. Kooiman, B. Kopf, M. Krause, J.M. Krieg, C. Kramer, B. Kruizenga, T. Kuhn, W. Laauwen, R. Lai, B. Larsson, H.G. Leduc, C. Leinz, R.H. Lin, R. Liseau, G.S. Liu, A. Loose, I. Lopez-Fernandez, S. Lord, W. Luinge, A. Marston, J. Martin-Pintado, A. Maestrini, F.W. Maiwald, C. McCoey, I. Mehdi, A. Megej, M. Melchior, L. Meinsma, H. Merkel, M. Michalska, C. Monstein, D. Moratschke, P. Morris, H. Muller, J.A. Murphy, A. Naber, E. Natale, W. Nowosielski, F. Nuzzolo, M. Olberg, M. Olbrich, R. Orfei, P. Orleanski, V. Ossenkopf, T. Peacock, J.C. Pearson, I. Peron, S. Phillip-May, L. Piazzo, P. Planesas, M. Rataj, L. Ravera, C. Risacher, M. Salez, L.A. Samoska, P. Saraceno, R. Schieder, E. Schlecht, F. Schlöder, F. Schmülling, M. Schultz, K. Schuster, O. Siebertz, H. Smit, R. Szczerba, R. Shipman, E. Steinmetz, J.A. Stern, M. Stokroos, R. Teipen, D. Teyssier, T. Tils, N. Trappe, C. van Baaren, B.J. van Leeuwen, H. van de Stadt, H. Visser, K.J. Wildeman, C.K. Wafelbakker, J.S. Ward, P. Wesselius, W. Wild, S. Wulff, H.J. Wunsch, X. Tielens, P. Zaal, H. Zirath, J. Zmuidzinas, F. Zwart, The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI), Astron. Astrophys. 518, L6 (2010)

    Google Scholar 

  672. U.U. Graf, S. Heyminck, R. Güsten, P. Hartogh, H.-W. Hübers, K. Jacobs, M. Philipp, D. Rabanus, H.P. Röser, J. Stutzki, P. van der Wal, A. Wagner-Gentner, in Proc Conf. on Millimeter and Submillimeter Detectors for Astronomy III, ed. by J. Zmuidzinas, W.S. Holland, S. Withington, W. Duncan (2006), GREAT: the German first light heterodyne instrument for SOFIA, Proc. SPIE 6275, pp. 62750K

    Google Scholar 

  673. E. Heinz, D. Born, G. Zieger, T. May, T. Krause, A. Krüger, M. Schulz, S. Anders, V. Zakosarenko, H.G. Meyer, M. Starkloff, M. Rössler, G. Thorwirth, U. Krause, Progress report on Safe VISITOR: approaching a practical instrument for terahertz security screening, Proc. SPIE 7670, 767005 (2010)

    Google Scholar 

  674. T. May, G. Zieger, S. Anders, V. Zakosarenko, H.G. Meyer, M. Schubert, M. Starkloff, M. Rößler, G. Thorwirth, U. Krause, in Passive Millimeter-Wave Imaging Technology XII, ed. by R. Appleby, D.A. Wikner (2009), Safe VISITOR: VISible, Infrared and Terahertz Object Recognition for security screening applications, Proc. SPIE 7309, 73090E

    Google Scholar 

  675. N. Karpowicz, H. Zhong, C. Zhang, K. Lin, J.S. Hwang, J. Xu, X.C. Zhang, Compact continuous-wave subterahertz system for inspection applications, Appl. Phys. Lett. 86, 054105 (2005)

    Google Scholar 

  676. C. Jördens, S. Wietzke, M. Salhi, R. Wilk, M. Koch, Potenziale der bildgebenden Terahertz-Spektroskopie, Technisches Messen 75, 71 (2008)

    Google Scholar 

  677. R.M. Woodward, B.E. Cole, V.P. Walker, R.J. Pye, D.D. Arnone, E.H. Linfield, M. Pepper, Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue, Phys. Med. Biol. 47, 3853 (2002)

    Google Scholar 

  678. W.J. Smith, Modern optical engineering, 2nd edn. (McGraw-Hill, 1990)

    Google Scholar 

  679. T.G. Blaney, Radiation detection at submillimetre wavelengths, J. Phys. E: Sci. Instrum. 11, 856 (1978)

    Google Scholar 

  680. R. Appleby, H.B. Wallace, Standoff detection of weapons and contraband in the 100 GHz to 1 THz region, IEEE Trans. Antennas Propagation 55, 2944 (2007)

    Google Scholar 

  681. A.L. Woodcraft, M.I. Hollister, D. Bintley, M.A. Ellis, X. Gao, W.S. Holland, M.J. MacIntosh, P.A.R. Ade, J.S. House, C.L. Hunt, R.V. Sudiwala, W.D. Duncan, G.C. Hilton, K.D. Irwin, C.D. Reintsema, C.C. Dunare, W. Parkes, A.J. Walton, J.B. Kycia, M. Amiri, B. Burger, M. Halpern, in Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III, ed. by J. Zmuidzinas, W.S. Holland, S. Withington, W.D. Duncan (2006), Characterization of a prototype SCUBA-2 1280 pixel submillimetre superconducting bolometer array, Proc. SPIE 6275, 62751F

    Google Scholar 

  682. A. Luukanen, L. Grönberg, M. Grönholm, P. Lappalainen, M. Leivo, A. Rautiainen, A. Tamminen, J. Ala-Laurinaho, C.R. Dietlein, E.N. Grossman, Real-time passive terahertz imaging system for standoff concealed weapons imaging, Proc. SPIE 7670, 767004 (2010)

    Google Scholar 

  683. H.-W. Hübers, A.D. Semenov, H. Richter, U. Böttger, in Terahertz for Military and Security Applications V, ed. by J.O. Jensen, H.L. Cui, Terahertz imaging system for stand-off detection of threats, Proc. SPIE 6549, 65490A (2007)

    Google Scholar 

  684. C.C. Franck, D. Lee, R.L. Espinola, S.R. Murrill, E.L. Jacobs, S.T. Griffin, D.T. Petkie, J. Reynolds, in Terahertz for Military and Security Applications V, ed. by J.O. Jensen, H.L. Cui, Terahertz standoff imaging testbed design and performance for concealed weapon and device identification model development, Proc. SPIE 6549, 654908 (2007)

    Google Scholar 

  685. K.S. Yngvesson, in Infrared and Millimeter Waves, ed. by K.J. Button (Academic Press, New York, 1983), vol. 10, chap. 1 - Near-millimeter imaging with integrated planar receptors: General requirements and constraints, pp. 91

    Google Scholar 

  686. S. Heyminck, U.U. Graf, Reflection gratings as THz local oscillator multiplexers, in airborne telescope systems, Proc. SPIE 4014, 164 (2000)

    Google Scholar 

  687. C. Walker, C. Kulesa, J. Kloosterman, D. Lesser, T. Cottam, C. Groppi, J. Zmuidzinas, M. Edgar, S.Radford, P. Goldsmith, W. Langer, H. Yorke, J. Kawamura, I. Mehdi, D. Hollenbach, J. Stutzski, H.-W. Hübers, J. Gao, C. Martin, in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V, ed. by W.S. Holland, J. Zmuidzinas, Large Format Heterodyne Arrays for Observing Far-Infrared Lines with SOFIA, Proc. SPIE, 7741, 77,410Z (2010)

    Google Scholar 

  688. D.F. Filipovic, G.P. Gauthier, S. Raman, G.M. Rebeiz, Off-axis properties of silicon and quartz dielectric lens antennas, IEEE Trans. Antennas Propagation 45, 760 (1997)

    Google Scholar 

  689. A.D. Semenov, H. Richter, H.-W. Hübers, B. Günther, A. Smirnov, K. Ilin, M. Siegel, J. Karamarkovic, Terahertz performance of integrated lens antennas with a hot electron bolometer, IEEE Trans. Microw. Theory Techn. 55(2), 239 (2007)

    Google Scholar 

  690. K.B. Cooper, R.J. dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, P.H. Siegel, Penetrating 3-D imaging at 4- and 25-m range using submillimeter-wave radiation, IEEE Trans. Microw. Theory Techn. 56, 2771 (2008)

    Google Scholar 

  691. D.M. Mittleman, S. Hunsche, L. Boivin, M.C. Nuss, T-ray tomography, Opt. Lett. 22, 904 (1997)

    Google Scholar 

  692. S. Wang, X.C. Zhang, Pulsed terahertz tomography, J. Phys. D: Appl. Phys. 37, R1 (2004)

    Google Scholar 

  693. K. McClatchey, M.T. Reiten, R.A. Cheville, Time resolved synthetic aperture terahertz impulse imaging, Appl. Phys. Lett. 79, 4485 (2001)

    Google Scholar 

  694. J. Xu, X.C. Zhang, Terahertz wave reciprocal imaging, Appl. Phys. Lett. 88, 151107 (2006)

    Google Scholar 

  695. W.L. Chan, K. Charan, D. Takhar, K.F. Kelly, R.G. Baraniuk, D.M. Mittleman, A single-pixel terahertz imaging system based on compressed sensing, Appl. Phys. Lett. 93, 121105 (2008)

    Google Scholar 

  696. A. Dobroiu, M. Yamashita, Y.N. Ohshima, Y. Morita, C. Otani, K. Kawase, Terahertz imaging system based on a backward-wave oscillator, Appl. Opt. 43, 5637 (2004)

    Google Scholar 

  697. S. Ariyoshi, C. Otani, H. Sato, K. Kawase, H.M. Shimizu, T. Taino, H. Matsuo, Terahertz imaging with a direct detector based on superconducting tunnel junctions, Appl. Phys. Lett. 88, 203503 (2006)

    Google Scholar 

  698. K.J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, S. Czasch, Continuous-wave all-optoelectronic terahertz imaging, Appl. Phys. Lett. 80, 3003 (2002)

    Google Scholar 

  699. I.S. Gregory, W.R. Tribe, C. Baker, B.E. Cole, M.J. Evans, L. Spencer, M. Pepper, M. Missous, Continuous-wave terahertz system with a 60 dB dynamic range, Appl. Phys. Lett. 86, 204104 (2005)

    Google Scholar 

  700. J. Darmo, V. Tamosiunas, G. Fasching, J. Kröll, K. Unterrainer, M. Beckk, M. Giovannini, J. Faist, C. Kremser, P. Debagge, Imaging with a THz quantum cascade laser, Opt. Express 12, 1879 (2004)

    Google Scholar 

  701. S. Barbieri, J. Alton, C. Baker, T. Lo, H.E. Beere, D. Ritchie, Imaging with THz quantum cascade lasers using a Schottky diode mixer, Opt. Express 13, 6497 (2005)

    Google Scholar 

  702. K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, Non-destructive terahertz imaging of illicit drugs using spectral fingerprints, Opt. Express 11, 2549 (2003)

    Google Scholar 

  703. K.L. Nguyen, M.L. Johns, L.F. Gladden, C.H. Worral, P. Alexander, H.E. Beere, M. Pepper, D.A. Ritchie, J. Alton, S. Barbieri, E.H. Linfield, Three-dimensional imaging with terahertz quantum cascade laser, Opt. Express 14, 2123 (2006)

    Google Scholar 

  704. G.T. Herman, Advances in Computer Vision and Pattern Recognition in Fundamentals of Computerized Tomography, ed. by S. Singh, 2nd edn. (Springer, London, 2010, originally published by Academic Press, New York, 1980)

    Google Scholar 

  705. W.L. Chan, J. Deibel, D.M. Mittleman, Imaging with terahertz radiation, Rep. Prog. Phys. 70, 1325 (2007)

    Google Scholar 

  706. A.J. Fitzgerald, E. Berry, R.E. Miles, N.N. Zinovev, M.A. Smith, J.M. Chamberlain, Evaluation of image quality in terahertz pulsed imaging using test objects, Phys. Med. Biol. 47, 3865 (2002)

    Google Scholar 

  707. L. Duvillaret, F. Garet, J.L. Coutaz, Influence of noise on the characterization of materials by terahertz time-domain spectroscopy, J. Opt. Soc. Am. B 17, 452 (2000)

    Google Scholar 

  708. Y.C. Shen, T. Lo, P.F. Taday, B.E. Cole, W.R. Tribe, M.C. Kemp, Detection and identification of explosives using terahertz pulsed spectroscopic imaging, Appl. Phys. Lett. 86, 241116 (2005)

    Google Scholar 

  709. J.L. Johnson, T.D. Dorney, D.M. Mittleman, Enhanced depth resolution in terahertz imaging using phase-shift interferometry, Appl. Phys. Lett. 78, 835 (2001)

    Google Scholar 

  710. Y. Kawada, T. Yasuda, A. Nakanishi, H. Takahashi, S.-ichiro Aoshima, Single-shot measurement of terahertz temporal waveform using pulse-front tilting by a direct vision dispersion prism, Rev. Sci. Instrum. 80, 113703 (2009)

    Google Scholar 

  711. Z. Jiang, X.C. Zhang, Terahertz imaging via electrooptic effect, IEEE Trans. Microw. Theory Techn. 47, 2644 (1999)

    Google Scholar 

  712. E.H. Synge, A suggested method for extending the microscopic resolution into the ultramicroscopic region, Phil. Mag. 6, 356 (1928)

    Google Scholar 

  713. H.A. Bethe, Theory of diffraction by small holes, Phys. Rev. 66, 163 (1944)

    Google Scholar 

  714. C.J. Bouwkamp, On Bethe’s theory of diffraction by small holes, Philips Res. Rep. 5, 321 (1950)

    Google Scholar 

  715. G.A. Massey, J.A. Davis, S.M. Katnik, E. Omon, Subwavelength resolution far-infrared microscopy, Appl. Opt. 24, 1498 (1985)

    Google Scholar 

  716. O. Mitrofanov, M. Lee, J.W.P. Hsu, L.N. Pfeiffer, K.W. West, J.D. Wynn, J. Frederici, Terahertz pulse propagation through small apertures, Appl. Phys. Lett. 79, 907 (2001)

    Google Scholar 

  717. N.C.J. van der Valk, P.C.M. Planken, Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip, Appl. Phys. Lett. 81(9), 1558 (2002)

    Google Scholar 

  718. H.T. Chen, R. Kersting, G.C. Cho, Terahertz imaging with nanometer resolution, Appl. Phys. Lett. 83(15), 3009 (2003)

    Google Scholar 

  719. F. Keilmann, FIR microscopy, Infrared Phys. Technol. 36(1), 217 (1995)

    Google Scholar 

  720. R. Merz, F. Keilmann, R.J. Haug, K. Ploog, Non-equilibrium edge state transport resolved by far-infrared microscopy, Phys. Rev. Lett. 70, 651 (1993)

    Google Scholar 

  721. S. Hunsche, M. Koch, I. Brener, M.C. Nuss, THz near-field imaging, Opt. Comm. 150, 22 (1998)

    Google Scholar 

  722. O. Mitrofanov, I. Brener, R. Harel, J.D. Wynn, L.N. Pfeiffer, K.W. West, J. Frederici, Terahertz near-field microscopy based on a collection mode detector, Appl. Phys. Lett. 77, 3496 (2000)

    Google Scholar 

  723. Q. Chen, Z. Jiang, G.X. Xu, X.C. Zhang, Near field terahertz imaging with a dynamical aperture, Opt. Lett. 25, 1122 (2000)

    Google Scholar 

  724. S. Mair, B. Gompf, M. Dressel, Spatial and spectral behaviour of the optical near field studied by a terahertz near field spectrometer, Appl. Phys. Lett. 84, 1219 (2004)

    Google Scholar 

  725. B. Gompf, M. Gerull, T. Müller, M. Dressel, THz-micro-spectroscopy with backward wave oscillators, Infrared Phys. Technol. 49, 128 (2006)

    Google Scholar 

  726. D.V. Palanker, G.H.M. Knippels, T.I. Smith, H.A. Schwettman, Fast IR imaging with sub-wavelength resolution using a transient near field probe, Nucl. Instrum. Meth. Phys. Res. B 144, 240 (1998)

    Google Scholar 

  727. B. Gompf, N. Gebert, H. Heer, M. Dressel, Polarization contrast terahertz-near-field imaging of anisotropic conductors, Appl. Phys. Lett. 90, 082104 (2007)

    Google Scholar 

  728. E. Bründermann, M. Havenith, SNIM - Scanning near-field infrared microscopy in Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., vol. 104 (The Royal Society of Chemistry, 2008), pp. 235–255

    Google Scholar 

  729. F. Keilmann, R. Hillenbrand, in Nano-Optics and Near-Field Optical Microscopy, ed. by A. Zayats, D. Richards (ArtechHouse, 2009), chap. 11 - Near-field nanoscopy by elastic light scattering from a tip, pp. 235–265

    Google Scholar 

  730. A.J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, R. Hillenbrand, Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices, Nano Lett. 8(11), 3766 (2008)

    Google Scholar 

  731. S.C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L.M. Eng, S. Winnerl, D. Stehr, M. Helm, Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser, Phys. Rev. Lett. 100(25), 256403 (2008)

    Google Scholar 

  732. H.G. von Ribbeck, M.T. Wenzel, R. Jacob, L.M. Eng, Scattering near-field microscopy in the THz region using a free-electron laser in 35th International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-THz, 2010), Tu-E2.4

    Google Scholar 

  733. K. Wang, D.M. Mittleman, N.C.J.V. der Valk, P.C.M. Planken, Antenna effects in terahertz apertureless near-field optical microscopy, Appl. Phys. Lett. 85(14), 2715 (2004)

    Google Scholar 

  734. K. Wang, A. Barkan, M. Mittleman, Propagation effects in apertureless near-field optical antennas, Appl. Phys. Lett. 84(2), 305 (2004)

    Google Scholar 

  735. G.C. Cho, H.T. Chen, S. Kraatz, N. Karpowicz, R. Kersting, Apertureless terahertz near-field microscopy, Semicond. Sci. Technol. 20(7), S286 (2005)

    Google Scholar 

  736. F. Buersgens, R. Kersting, H.T. Chen, Terahertz microscopy of charge carriers in semiconductors, Appl. Phys. Lett. 88(11), 112115 (2006)

    Google Scholar 

  737. N. Ocelic, A. Huber, R. Hillenbrand, Pseudoheterodyne detection for background-free near-field spectroscopy, Appl. Phys. Lett. 89, 101124 (2006)

    Google Scholar 

  738. I. Kopf, C. Grunwald, E. Bründermann, L. Casalis, G. Scoles, M. Havenith, Detection of hybridization on nanografted oligonucleotides using scanning near-field infrared microscopy, J. Phys. Chem. C 114(2), 1306 (2010)

    Google Scholar 

  739. T. Yamaguchi, S. Yoshida, A. Kinbara, Optical effect of the substrate on the anomalous absorption of aggregated silver films, Thin Solid Films 21, 173 (1974)

    Google Scholar 

  740. B. Knoll, F. Keilmann, Near-field probing of vibrational absorption for chemical microscopy, Nature 399, 134 (1999)

    Google Scholar 

  741. A. Cvitkovic, N. Ocelic, R. Hillenbrand, Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy, Opt. Express 15(14), 8550 (2007)

    Google Scholar 

  742. G. Wollny, E. Bründermann, Z. Arsov, L. Quaroni, M. Havenith, Nanoscale depth resolution in scanning near-field infrared microscopy, Opt. Express 16, 7453 (2008)

    Google Scholar 

  743. R. Hillenbrand, F. Keilmann, Complex optical constants on a subwavelength scale, Phys. Rev. Lett. 85(14), 3029 (2000)

    Google Scholar 

  744. E. Bründermann, D.A. Schmidt, I. Kopf, M. Havenith, Nano-spectroscopy and chemical nanoscopy of biomaterials, Am. Inst. Phys. Conf. Proc. 1214, 7 (2010)

    Google Scholar 

  745. S. Amarie, T. Ganz, F. Keilmann, Mid-infrared near-field spectroscopy, Opt. Express 17, 21794 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Bründermann .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bründermann, E., Hübers, HW., Kimmitt, M.F. (2012). Spectroscopic Methods. In: Terahertz Techniques. Springer Series in Optical Sciences, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02592-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02592-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02591-4

  • Online ISBN: 978-3-642-02592-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics