Skip to main content

Aspects of Mycorrhizae in Desert Plants

  • Chapter
  • First Online:
Desert Plants

Abstract

Mycorrhizal symbioses are critical to desert plants since they face the challenges of scarce, sporadic precipitation, nutrient deficiencies, intense solar radiation, and the high temperatures found in hot deserts. Deserts are covering increasingly more of the Earth's surface area as desertification increases globally. Mycorrhizal desert plants have a greater chance of survival in the harsh desert environment. Desert plants form mycorrhizae with endomycorrhizal arbuscular fungi and with ectomycorrhizal fungi. Both form extensive networks of hyphae in the soil, and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi, is crucial in soil structure and carbon storage. Mycorrhizal desert plants are important in agriculture, ecosystem biology, and conservation of the deserts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen MF (1988) Re-establishment of mycorrhizae following severe disturbance: comparative patch dynamics Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, New York

    Google Scholar 

  • Allen MF (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J 6:291–297 of a shrub desert and a subalpine volcano. Proc R Soc Edinburgh 94:63–71

    Article  Google Scholar 

  • Allen MF, Crisafulli C, Friese CF, Jeakins SL (1992) Reformation of mycorrhizal symbioses on Mount St. Helens, 1980–1990: interactions of rodents and mycorrhizal fungi. Mycol Res 98:447–453

    Article  Google Scholar 

  • Allen MF, Swenson W, Querejeta JL, Egerton-Warburton LM, Treseder KK (2003) Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Annu Rev Phytopathol 41:271–303

    Article  CAS  PubMed  Google Scholar 

  • Apple ME, Thee CI, Smith-Longozo VL, Cogar CR, Wells CE, Nowak RS (2005) Arbuscular mycorrhizal colonization of Larrea tridentata and Ambrosia dumosa roots varies with precipitation and season in the Mojave Desert. Symbiosis 39:131–136

    Google Scholar 

  • Asghari HA, Marschner P, Smith SE, Smith FA (2005) Growth response of Atriplex nummularia to mycorrhizal inoculation at different salinity levels. Plant Soil 273:245–256

    Article  CAS  Google Scholar 

  • Asghari HR, Amerian MR, Gorbani H (2008) Soil salinity affects arbuscular mycorrhizal colonization of halophytes. Pak J Biol Sci 11:1909–1915

    Article  CAS  PubMed  Google Scholar 

  • Bago B, Ascon-Aquilar C, Piche Y (1998) Architecture and developmental dynamics of the external mycelium of the arbuscular mycorrhizal fungi Glomus intraradices grown under monoxenic conditions. Mycologia 90:52–62

    Article  Google Scholar 

  • Bashan Y, Davis EA, Carrillo-Garcia A, Linderman RG (2000) Assessment of VA mycorrhizal inoculum potential in relation to the establishment of cactus seedlings under mesquite nurse-trees in the Sonoran Desert. Appl Soil Ecol 14:165–175

    Article  Google Scholar 

  • Bohrer G, Kagan-Zur V, Roth-Berjerano N, Ward D, Beck G, Bonifacio E (2003) Effects of different Kalahari-desert VA mycorrhizal communities on mineral acquisition and depletion from the soil by host plants. J Arid Environ 55:193–208

    Article  Google Scholar 

  • Carrillo-Garcia A, Leon de la Lux JL, Bashan Y, Bethlenfalvay GJ (1999) Nurse plants, mycorrhizae, and plant establishment in a disturbed area of the Sonoran Desert. Restor Ecol 7:321–335

    Article  Google Scholar 

  • Collier SC, Yarnes CT, Herman RP (2003) Mycorrhizal dependency of Chihuahuan Desert plants is influenced by life history strategy and root morphology. J Arid Environ 55:223–229

    Article  Google Scholar 

  • Davies FT, Potter JR, Linderman RG (1992) Mycorrhiza and repeated drought exposure affect drought resistance and extra radical hyphae development of pepper plants independent of plant size and nutrient content. J Plant Physiol 139:289–294

    Google Scholar 

  • Dennett A (2006) Underground structures and mycorrhizal associations of Solanum centrale (the Australian bush tomato), Honours Thesis, Plant Breeding Institute, University of Sydney, Sydney http://www.desertknowledgecrc.com.au. Cited 9 February 2009

    Google Scholar 

  • Diez J, Manjon JL, Martin F (2002) Molecular phylogeny of the mycorrhizal desert truffles, Terfezia and Tirmania, host specificity and edaphic tolerance. Mycologia 94:247–259

    Article  CAS  PubMed  Google Scholar 

  • Dilkes NB, Jones DL, Farrar J (2004) Temporal dynamics of carbon partitioning and rhizodeposition in wheat. Plant Physiol 134:706–715

    Article  CAS  PubMed  Google Scholar 

  • Finley R, Soderstrom B (1992) Mycorrhiza and carbon flow to the soil. In: Allen MF (ed) Mycorrhizal functioning: an integrated plant fungal process. Chapman and Hall, New York, pp 134–160

    Google Scholar 

  • Fitter AH (1991) Costs and benefits of mycorrhizas: implications for functioning under natural conditions. Experimentia 47:350–362

    Article  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  CAS  PubMed  Google Scholar 

  • Friese CF, Allen MF (1991) The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83:409–418

    Article  Google Scholar 

  • Gange AC, Bower E (1997) Interactions between insects and mycorrhizal fungi. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell, Oxford, pp 115–130

    Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbioses. New Phytol 128:197–210

    Article  Google Scholar 

  • Gianinazzi-Pearson V, Maldonado-Mendoza I, Lopez-Meyer M, Weidmann S, Harrison MJ (2006) Arbuscular mycorrhiza. In: Medicago truncatula Handbook, Noble Foundation. Available via http://www.noble.org/MedicagoHandbook/ArbuscularMycorrhiza Cited 9 February 2009

    Google Scholar 

  • Hartig T (1840) Vollstandige Naturgeschichte der Forstlichen Kulturpflanzen Deutschlands. Forstner'sche, Berlin

    Google Scholar 

  • Hashem AR, Al-Obaid AM (1996) Mineral composition of soil and wild desert truffles in Saudi Arabia. J King Saud Univ Sci 8:5–10

    CAS  Google Scholar 

  • He X, Bledsoe CS, Zasoski RJ, Southworth D, Horwath WR (2006) Rapid nitrogen transfer from ectomycorrhizal pines to adjacent ectomycorrhizal and arbuscular mycorrhizal plants in a California oak woodland. New Phytol 170:143–151

    Article  CAS  PubMed  Google Scholar 

  • Jaiti F, Meddich A, El Hadrami I (2007) Effectiveness of arbuscular mycorrhizal fungi in the protection of date palm (Phoenix dactylifera L.) against Bayoud disease. Physiol Mol Plant Pathol 71:166–173

    Article  CAS  Google Scholar 

  • Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379

    Article  CAS  PubMed  Google Scholar 

  • Kagan-Zur V, Kuang J, Tabak S, Taylor FW, Roth-Bejerano N (1999) Potential verification of a host plant for the desert truffle Terfezia pfeilii by molecular methods. Mycol Res 103:1270–1274

    Article  CAS  Google Scholar 

  • Koltai H, Meir D, Shlomo E, Resnick N, Ziv O, Wininger S, Ben-Dor B, Kapulnik Y (2008) Exploiting arbuscular mycorrhizal technology in different cropping systems under greenhouse conditions in semi-arid regions. Acta Hortic 797:223–228

    Google Scholar 

  • Kozdrój J, Piotrowska-Seget Z, Krupa P (2007) Mycorrhizal fungi and ectomycorrhiza associated bacteria isolated from an industrial desert soil protect pine seedlings against Cd(II) impact. Ecotoxicology 16:449–456

    Article  PubMed  Google Scholar 

  • Levy A, Chang BJ, Abbott LK, Kuo J, Harnett G, Inglis TJJ (2003) Invasion of spores of the arbuscular mycorrhizal fungus Gigaspora decipiens by Burkholderia spp. Appl Environ Microbiol 69:6250–6256

    Article  CAS  PubMed  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhizae 7:139–153

    Article  CAS  Google Scholar 

  • Lugo M, Ferrero M, Menoyo E, Estévez M, Siñeriz F, Anton A (2008) Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along an altitudinal gradient in South American Puna grassland. Microb Ecol 55:705–713

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA, Killham K (1994) A critical review of labeling techniques used to quantify rhizosphere carbon flow. Plant Soil 166:55–62

    Article  CAS  Google Scholar 

  • Mejstrik VK, Cudlin P (1983) Mycorrhiza in some desert plant species in Algeria. Plant Soil 71:363–366

    Article  Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbiosis: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, London, pp 357–423

    Google Scholar 

  • Moorman T, Reeves FB (1979) The role of endomycorrhizae in revegetation practices in the semi-arid west. II. A bioassay to determine the effect of land disturbance on endomycorrhizal populations. Am J Bot 66:14–18

    Article  Google Scholar 

  • Nara K (2006) Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol 169:178

    Article  Google Scholar 

  • Nara K, Hogetsu T (2004) Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology 85:1700–1707

    Article  Google Scholar 

  • Nara K, Nakaya H, Wu B, Zhou Z, Hogetsu T (2003) Underground primary succession of ecyomycorrhizal fungi in a volcanic desert on Mount Fuji. New Phytol 159:743–756

    Article  CAS  Google Scholar 

  • O'Conner PJ, Smith SE, Smith FA (2001) Arbuscular mycorrhizal associations in the southern Simpson Desert. Aust J Bot 49:493–499

    Article  Google Scholar 

  • Parniske M (2004) Molecular genetics of the arbuscular mycorrhizal symbioses. Curr Opin Plant Biol 7:414–421

    Article  CAS  PubMed  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Koppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Peter M (2003) Volcanic deserts and primary succession: when and how do mycorrhizal fungi participate? New Phytol 159:534–536

    Article  Google Scholar 

  • Rillig MC, Wright SF, Allen MF, Field CB (1999) Rise in carbon dioxide changes soil structure. Nature 400:628

    Article  CAS  Google Scholar 

  • Rillig MC, Ramsey PW, Morris S, Paul EA (2003) Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Plant Soil 253:293–299

    Article  CAS  Google Scholar 

  • Shi Z, Zhang L, Feng G, Christie P, Tian C, Li X (2006) Diversity of arbuscular mycorrhizal fungi associated with desert ephemerals growing under and beyond the canopies of Tamarisk shrubs. Chin Sci Bull 51:132–139

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbioses, 2nd edn. Academic, London

    Google Scholar 

  • Staffeldt EE, Vogt KB (1974.) Mycorrhizae of the desert. Biome Research Memo, Utah State University, Logan, UT:7

    Google Scholar 

  • Smith SE, Smith FA (1990) Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol 114:1–38

    Article  CAS  Google Scholar 

  • Tarafdar JC, Kumar P (1996) The role of vesicular arbuscular mycorrhizal fungi on crop, tree and grasses grown in an arid environment. J Arid Environ 34:197–203

    Article  Google Scholar 

  • Titus JH, Del Moral R (1998) Vesicular-arbuscular mycorrhizae influence Mount St. Helens pioneer species in greenhouse experiments. Oikos 81:495–510

    Article  Google Scholar 

  • Titus JH, Titus PJ, Nowak RS, Smith SD (2002) Arbuscular mycorrhizae of Mojave desert plants. West N Am Nat 62:327–334

    Google Scholar 

  • Treseder KK, Turner KM (2007) Review and analysis: glomalin in ecosystems. Soil Sci Soc Am J 71:1257–1266

    Article  CAS  Google Scholar 

  • Vivas A, Marulanda A, Ruiz-Lozano J, Barea J, Azcón R (2003) Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhizae 13:249–26

    Article  Google Scholar 

  • Walker CM, Trappe JM (1993) Names and epithets in the Glomales and Endogonales. Mycol Res 97:339–344

    Article  Google Scholar 

  • West NE (1997) Interactions between arbuscular mycorrhizal fungi and foliar pathogens: consequences for host and pathogen. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell, Oxford, pp 79–89

    Google Scholar 

  • Whipps JM (1990) Carbon economy. In: Lynch JM (ed) The rhizosphere. Wiley, New York, pp 59–98

    Google Scholar 

  • White JA, Munn LC, Williams SE (1989) Edaphic and reclamation aspects of vesicular-arbuscular mycorrhiza in Wyoming red desert soils. Soil Sci Soc Am J 53:86–90

    Article  Google Scholar 

  • Woodward SL (2003) Biomes of Earth: terrestrial, aquatic, and human-dominated. Greenwood, Abingdon, UK

    Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107

    Article  CAS  Google Scholar 

  • Wright SF, Franke-Snyder M, Morton JB, Upadhyaya A (1996) Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 181:193–203

    Article  CAS  Google Scholar 

  • Wright SF, Starr JL, Paltineanu IC (1999) Changes in aggregate stability and concentration of glomalin during tillage management transition. Soil Sci Soc Am J 63:1825–1829

    Article  CAS  Google Scholar 

  • Wu B, Hogetsu T, Isobe K, Ishii R (2007) Community structure of arbuscular mycorrhizal fungi in a primary successional volcanic desert on the southeast slope of Mount Fuji. Mycorrhiza 17:495–506

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Chen Y, Li W (2008) Arbuscular mycorrhizal fungi infection in desert riparian forest and its environmental implications: a case study in the lower reach of Tarim River. Prog Nat Sci 18:983–991

    Article  Google Scholar 

  • Zaid A, de Wet PF, Djerbi M, Oihabi A (2002) Chapter XII: Diseases and pests of date palm. In: Zaid A (ed) Date palm cultivation FAO plant production and protection paper 156, http://www.fao.org/documents. Cited 9 February 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha E. Apple .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Apple, M.E. (2010). Aspects of Mycorrhizae in Desert Plants. In: Ramawat, K. (eds) Desert Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02550-1_6

Download citation

Publish with us

Policies and ethics