Skip to main content

Micromechanics

  • Chapter
  • First Online:
Neural Networks and Micromechanics

Abstract

We suggest a new technology for the production of low-cost micromechanical devices that is based on the application of microequipment, similar to conventional mechanical equipment, but much smaller. It permits us to use the conventional technology for the mechanical treatment of materials and for the automatic assembly of mechanical and electronic devices for manufacturing micromechanical and microelectromechanical devices of submillimeter sizes. We call it “Microequipment Technology” (MET). MET will use microequipment for manufacturing commercial products and in turn will produce the necessary microequipment units. The decrease in manufacturing costs of microdevices will be achieved on the basis of mass parallel production processes used in MET [1], instead of the batch processes used in Microelectromechanical Systems (MEMS) [2–4]. In accordance with MET, sequential generations of microequipment are to be created (Fig. 8.1) [5, 6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. M. Kussul, D. A. Rachkovskij, T. N. Baidyk, et al., Micromechanical engineering: a basis for the low cost manufacturing of mechanical microdevices using microequipment. J. Micromech. Microeng, 1996, Vol. 6, pp. 410–425.

    Article  Google Scholar 

  2. Ohlckers P., Hanneborg A., Nese M., Batch processing for micromachined devices. J. Micromech. Microeng, 1995, Vol. 5, pp. 47–56.

    Article  Google Scholar 

  3. Handbook of Microlithography, Micromachining, and Microfabrication. Vol. 2: Micromachining and Microfabrication. Ed. by P. Rai-Choundhury. SPIE Press, 1997.

    Google Scholar 

  4. Micromechanics and MEMS. Classsical and Seminal Papers to 1990. Ed. by W. S. Trimmer, IEEE Press, New York, 1997.

    Google Scholar 

  5. Kussul E., Baidyk T., Rachkovskij D., Talaev S. The method of micromechanical manufacture. Patent No. 2105652, Russia, 27.02.1998, priority from 2.02.1996 (in Russian).

    Google Scholar 

  6. Kussul E., Baidyk T., Rachkovskij D., Talaev S. The method of micromechanical manufacture. Patent No. 24091, Ukraine, 31.08.1998, priority from 17.01.1996 (in Ukrainian).

    Google Scholar 

  7. Naotake Ooyama, Shigeru Kokaji, Makoto Tanaka et al., Desktop Machining Microfactory. Proceedings of the 2-nd International Workshop on Microfactories, Switzerland, Oct.9–10, 2000. pp. 13–16.

    Google Scholar 

  8. Kussul E., Baidyk T., Ruiz-Huerta L., Caballero A., Velasco G., Kasatkina L., Development of Micromachine Tool Prototypes for Microfactories, Journal of Micromechanics and Microengineering, 12, 2002, pp. 795–812.

    Article  Google Scholar 

  9. Ohlckers P., Jakobsen H. High Volume Production of Silicon Sensor Microsystems for Automotive Applications. IEEE Colloquium on Assembly and Connection in Microsystems (Digest No. 1997/004), 1997, pp. 8/1 – 8/7.

    Google Scholar 

  10. Eddy D.S., Sparks D.R. Application of MEMS Technology in Automotive Sensors and Actuators. Proceedings of the IEEE, Vol.86, Issue 8, 1998, pp. 1747–1755.

    Article  Google Scholar 

  11. Tang T.K., Gutierrez R.C., Stell C.B., Vorperian V., Arakaki G.A., Rice G.T., Li W.J., Chakraborty I., Shcheglow K., Wilcox J.Z., Kaiser W.J. A Packaged Silicon MEMS Vibratory Gyroscope for Microspacecraft. 10th Annual International Workshop on Micro Electro Mechanical Systems, 1997, pp. 500–505.

    Google Scholar 

  12. Norvell B.R., Hancock R.J., Smith J.K., Pugh M.L., Theis S.W., Kriatkofsky J. Micro Electro Mechanical Switch (MEMS) Technology Applied to Electronically Scanned Arrays for Space Based Radar. Aerospace Conference, 1999, Proceedings, Vol. 3, pp. 239–247.

    Google Scholar 

  13. Madni A.M., Wan L.A. Micro Electro Mechanical Systems (MEMS): an Overview of Current State-of-the Art. Aerospace Conference, 1998 IEEE, Vol. 1, pp. 421–427.

    Google Scholar 

  14. Janson S., Helvajian H., Amimoto S., Smit G., Mayer D., Feuerstein S. Microtechnology for Space Systems. Aerospace Conference, 1998 IEEE, Vol. 1, pp. 409–418.

    Google Scholar 

  15. Minor R.R., Rowe D.W. Utilization of GPS/MEMS-IMU for Measurement of Dynamics for Range Testing of Missiles and Rockets. Position Location and Navigation Symposium, IEEE 1998, pp. 602–607.

    Google Scholar 

  16. Yu-Chong Tai. Aerodynamic Control of a Delta-wing Using MEMS Sensors and Actuators. Proceedings of the 1997 International Symposium on Micromechatronics and Human Science, 1997, pp. 21-26.

    Google Scholar 

  17. Fujita H. Microactuators and Micromachines. Proceedings of the IEEE, Vol. 86, 1998, No. 8, pp. 1721–1732.

    Google Scholar 

  18. Comtois J.H., Michalicek M.A., Clark N., Cowan W., MOEMS for Adaptive Optics. Broadband Optical Networks and Technologies: An Emerging Reality/Optical MEMS/ Smart Pixels/Organic Optics and Optoelectronics, 1998, IEEE/LEOS Summer Topical Meetings, 1998, pp. II/95-II/96.

    Google Scholar 

  19. McCormick F. B, Optical MEMS Potentials in Optical Storage. Broadband Optical Networks and Technologies: An Emerging Reality/Optical MEMS/Smart Pixels/Organic Optics and Optoelectronics, 1998, IEEE/LEOS Summer Topical Meetings, pp. II/5-II/6.

    Google Scholar 

  20. Kuwano H., MEMS for Telecommunication Systems. Proceedings of the 7th International Symposium on Micro Machine and Human Science, 1996, pp. 21–28.

    Google Scholar 

  21. Johnson M. D. Hughes G. A. Gitlin M. L. Loebel N. G. Paradise N. F. Cathode Ray Addressed Micromirror Display. Proceedings of the 13th Biennial University/ Government/ Industry Microelectronics Symposium, 1999, pp. 158–160.

    Google Scholar 

  22. Brown E.R., RF-MEMS Switches for Reconfigurable Integrated Circuits, IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 11, 1998, pp. 1868–1880.

    Article  Google Scholar 

  23. Pillans B., Eshelman S., Malczewski A., Ehmke J., Goldsmith C., Ka-band RF MEMS Phase Shifters. IEEE Microwave and Guided Wave Letters, 1999, Vol. 9, pp. 520–522.

    Article  Google Scholar 

  24. Wu H.D., Harsh K.F. Irwin R.S. Wenge Zhang, Mickelson A.R., Lee Y.C., Dobsa J.B., MEMS Designed for Tunable Capacitors. Microwave Symposium Digest, 1998 IEEE MTT-S International, 1998, Vol. 1, pp. 127–129.

    Google Scholar 

  25. Wu S., Mai J., Tai Y.C., Ho C.M., Micro Heat Exchanger by Using MEMS Impinging Jets. 12th IEEE International Conference on Micro Electro Mechanical Systems, 1999, pp. 171–176.

    Google Scholar 

  26. Rachkovskij D. A., Kussul E. M., Talayev S. A., Heat Exchange in Short Microtubes and Micro Heat Exchangers with Low Hydraulic Losses. Microsystem Technologies, 1998, Vol. 4, pp. 151–158.

    Article  Google Scholar 

  27. Bier W., Keller W., Linder G., Siedel D., Schubert K., Martin H. Gas-to Gas Transfer in Micro Heat Exchangers. Chemical Engineering and Processing, 1993, Vol. 32, pp. 33–43.

    Article  Google Scholar 

  28. Friedrich C., Kang S. Micro Heat Exchangers Fabricated by Diamand Machining. Precision Engineering, 1994, Vol. 16, pp. 56–59.

    Article  Google Scholar 

  29. Katsura S., Hirano K., Yamaguchi A., Ishii R., Imayou H., Matsusawa Y., Mizuno A. Manipulation of Chromosomal DNA and Localization of Enzymatic Activity. Industry Applications Conference, 32nd IAS Annual Meeting IAS'97, Conference Record of the 1997 IEEE, 1997, Vol. 3, pp. 1983–1989.

    Article  Google Scholar 

  30. Dohi T. Computer Aided Surgery and Micro Machine. Proceedings of the 6th International Symposium on Micro Machine and Human Science, MHS'95, 1995, pp. 21–24.

    Google Scholar 

  31. Cibuzar G., Polla D., McGlennen R., Biomedical MEMS Research at the University of Minnesota. Proceedings of the 12th Biennial University/Government/Industry Microelectronics Symposium, 1997, pp. 145–149.

    Google Scholar 

  32. Sun L., Sun P., Qin X., Wang C., Micro Robot in Small Pipe with Electromagnetic Actuator. International Symposium on Micromechatronics and Human Science, 1998, pp. 243–248.

    Google Scholar 

  33. Caprari G., Balmer P., Piguet R., Siegwart R., The Autonomous Micro Robot “Alice”: a Platform for Scientific and Commercial Applications. International Symposium on Micromechatronics and Human Science, 1998, pp. 231–235.

    Google Scholar 

  34. Hayashi I., Iwatsuki N., Micro Moving Robotics. International Symposium on Micromechatronics and Human Science, 1998, pp. 41–50.

    Google Scholar 

  35. http://www.siliconstrategies.com/story/OEG20020827S0031

  36. Micro Mechanical Systems: Principles and Technology. Ed. By T. Fukuda and W. Menz. Elsevier Science B.V. 1998.

    Google Scholar 

  37. Mazuzawa T., An Approach to Micromachining through Machine Tool Technology. Proc. 2 nd Int. Symp. Micro Machine and Human Science (Nagoya, Japan), 1991, pp. 47–52.

    Google Scholar 

  38. Friedrich C. R. and Vasile M. J., Development of the Micromilling Process for High- Aspect- Ratio Micro Structures. J. Microelectromechanical Systems, 1996, 5, pp. 33–38.

    Article  Google Scholar 

  39. Friedrich C.R. and Kang S.D., Micro Heat Exchangers Fabricated by Diamond Machining. Precision Engineering, 1994, 16, pp. 56–59.

    Article  Google Scholar 

  40. Yamagata Y. and Higuchi T. Four Axis Ultra Precision Machine Tool and Fabrication of Micro Parts by Precision Cutting Technique. Proc. 8th Int. Precision Engineering Seminar (Compiegne, France), 1995, pp. 467–470.

    Google Scholar 

  41. Ishihara H., Arai F., Fukuda T., Micro Mechatronics and Micro Actuators. IEEE/ASME Transactions on Mechatronics, 1996, Vol. 1, pp. 68-79.

    Article  Google Scholar 

  42. Some Micro Machine Activities in Japan. Report ATIP96.021, 1996.

    Google Scholar 

  43. Okazaki Yuichi, Kitahara Tokio, Micro-Lathe Equipped with Closed-Loop Numerical Control, Proceedings of the 2nd International Workshop on Microfactories, Switzerland, Oct. 9–10, 2000, pp. 87–90.

    Google Scholar 

  44. Maekawa H., Komoriya K. Development of a Micro Transfer Arm for a Microfactory. Proceedings of the 2001 IEEE International Conference on Robotics & Automation, Seoul, Korea, May 2001, pp.1444–1451.

    Google Scholar 

  45. Bleuler H., Clavel R., Breguet J.-M., Langen H., Pernette E. Issues in Precision Motion Control and Microhandling. Proceedings of the 2000 IEEE International Conference on Robotics & Automation, San Francisco, 2000, pp. 959–964.

    Google Scholar 

  46. Ishikawa Yu., Kitahara T. Present and Future of Micromechatronics. 1997 International Symposium on Micromechatronics and Human Science, 1997, pp.13–20.

    Google Scholar 

  47. Naotake Ooyama, Shigeru Kokaji, Makoto Tanaka et al., Desktop Machining Microfactory. Proceedings of the 2-nd International Workshop on Microfactories, Switzerland, Oct. 9–10, 2000, pp.14–17.

    Google Scholar 

  48. Trimmer W.S.N. Microrobots and Micromechanical Systems. In: Sensors and Actuators, 19, 1989, pp. 267–287.

    Google Scholar 

  49. Kussul E., Baidyk T., Ruiz-Huerta L., Caballero-Ruiz A., Velasco G., Makeyev O., Techniques in the Development of Micromachine Tool Prototypes and Their Applications in Microfactories. In: MEMS/NEMS Handbook: Techniques and Applications, Ed. by Cornelius T. Leondes, Kluwer Academic Publishers, 2006, Vol. 3, Chapter 1, pp. 1–61.

    Google Scholar 

  50. Kussul E., Baidyk T., Ruiz-Huerta L., Caballero-Ruiz A., Velasco G., Scaling down of microequipment parameters, Precision Engineering, 2006, Vol. 30, Issue 2, pp. 211–222.

    Article  Google Scholar 

  51. G. H. J. Florussen, F. L. M. Delbressine, M. J. G. van de Molengraft, P. H. J. Schellekens, Assessing geometrical errors of multi-axis machines by three-dimensional length measurement. J. Measurement, 30, 2001, pp. 241–255.

    Article  Google Scholar 

  52. Kussul E., Baidyk T., Ruiz-Huerta L., Caballero-Ruiz A., Velasco G., CNC Micromachine Tool: Design & Metrology Problems, in: Advances in Systems Theory, Mathematical Methods and Applications, A. Zemliak, N. Mastorakis, (eds.), Greece, 2002, WSEAS Press, pp. 93–97.

    Google Scholar 

  53. Caballero-Ruiz A., Ruiz-Huerta L., Kussul E., Baidyk T., Velasco G., Micromachine tool: measurement and control, 17th Annual Meeting, ASPE, St. Louis, Missouri, Oct. 20– 25, 2002, pp. 377–382.

    Google Scholar 

  54. Alberto Caballero Ruiz, Metodología de Evaluación para Microequipo, Doctorado en Ingeniería Mecánica (Tesis), 11 May 2005, pp. 116.

    Google Scholar 

  55. Caballero-Ruiz A., Ruiz-Huerta L., Baidyk T., Kussul E. Geometrical errors analysis of a CNC micro-machine tool, Mechatronics, Vol. 17, Issues 4–5, May–June 2007, pp. 231–243.

    Article  Google Scholar 

  56. Leopoldo Ruiz Huerta, Desarrollo de microequipo para células de manufactura, Doctorado en Ingeniería Mecánica (Tesis), 11 May 2005, pp. 110.

    Google Scholar 

  57. X. Yang, M.J. Yang, X. O. Wang, E. Meng, Y.C. Tai, C.M. Ho Jan. 1998 Micromachined membrane particle filters. Proceedings of The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, MEMS 98, 1998, pp. 137 – 142.

    Google Scholar 

  58. Kussul E. Control Paralelo de Máquinas Herramientas, Congreso SOMI'XVI, Querétero, México, October 15–19, 2001, pp.7.

    Google Scholar 

  59. E.Kussul, B.López Walle. Tecnología de alambrado por tejido alambre magneto. Congreso SOMI XVII, Mérida, Yucatán, México, 14–18 October, 2002, pp.8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Kussul .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kussul, E., Baidyk, T., Wunsch, D.C. (2010). Micromechanics. In: Neural Networks and Micromechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02535-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02535-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02534-1

  • Online ISBN: 978-3-642-02535-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics