Skip to main content

Permutation Coding Technique for Image Recognition System

  • Chapter
  • First Online:
Neural Networks and Micromechanics

Abstract

A feature extractor and neural classifier for a face image recognition system are proposed. They are based on the Permutation Coding technique, which continues our investigation of neural networks. The permutation coding technique makes it possible to take into account not only detected features, but also the position of each feature in the image. It permits us to obtain a sufficiently general description of the image to be recognized. Different types of images were used to test the proposed image recognition system. It was tested on the handwritten digit recognition problem and the face recognition problem. The results of this test are very promising. The error rate for the MNIST database is 0.44%, and for the ORL database it is 0.1%. In the last section, which is devoted to micromechanics applications, we will describe the application of the permutation coding technique to the micro-object shape recognition problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.Bottou, C. Cortes, J. Denker, H. Drucker, L. Guyon, L. Jackel, Y. LeCun, U. Muller, E. Sackinger, P. Simard, V. Vapnik, Comparison of classifier methods: a case study in handwritten digit recognition, Proceedings of 12th IAPR Intern. Conf. on Pattern Recognition, 1994, Vol. 2, pp. 77–82.

    Google Scholar 

  2. http://www.research.att.com/∼yann/ocr/mnist/index.html

  3. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, Vol. 86, No. 11, 1998, pp. 2278–2344.

    Article  Google Scholar 

  4. M.S. Hoque, M.C. Fairhurst, A moving window classifier for off-line character recognition, Proceedings of the 7th International Workshop on Frontiers in Handwriting Recognition, 2000, pp. 595–600.

    Google Scholar 

  5. S. Belongie, J. Malik, J. Puzicha, Matching shapes, Proceedings of the 8th IEEE International Conference on Computer Vision ICCV, Vol.1, 2001, pp. 454–461.

    Google Scholar 

  6. S. Belongie, J. Malik, J. Puzicha, Shape matching and object recognition using shape contexts, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 4, 2002, pp. 509–522.

    Article  Google Scholar 

  7. E. Kussul, T. Baidyk, L. Kasatkina, V. Lukovich, Rosenblatt perceptrons for handwritten digit recognition. Proceedings of International Joint Conference on Neural Networks IJCNN'01. Washington, D.C., USA, July 15–19, 2001, pp. 1516–1520.

    Google Scholar 

  8. E. Kussul, T. Baidyk, Improved method of handwritten digit recognition tested on MNIST database, Proceedings of the 15th Intern Conf. on Vision Interface, Calgary, Canada, 2002, pp. 192–197.

    Google Scholar 

  9. Cheng-Lin Liu, K.Nakashima, H.Sako, H. Fujisawa, Handwritten digit recognition using state-of-the-art techniques, Proceedings of the 8-th International Workshop on Frontiers in Handwritten Recognition, Ontario, Canada, August 2002, pp. 320–325.

    Google Scholar 

  10. Teewoon Tan, Hong Yan, Object recognition using fractal neighbor distance: eventual convergence and recognition rates. Proceedings of the 15th IEEE International Conference on Pattern Recognition, Vol. 2, 3–7 Sept. 2000, pp. 781–784.

    Google Scholar 

  11. Meng Joo Er, Shiqian Wu, Juwei Lu, Hock Lye Toh, Face recognition with radial basis function (RBF) neural networks, IEEE Transactions on Neural Networks, Vol. 13, No. 3, May 2002, pp. 697–710.

    Article  Google Scholar 

  12. S. Singh, M. Singh, M. Markou, Feature selection for face recognition based on data partitioning, Proceedings of the 16th International conference on pattern recognition, Vol. 1, 2002, pp. 680–683.

    Google Scholar 

  13. R Javad Haddadnia, Majid Ahmadi, Karim Faez, An efficient method for recognition of human faces using higher orders pseudo Zernike moment invariant, Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition (FGR'02), 2002, p. 6.

    Google Scholar 

  14. Wu Xiao-Jun, Wang Shi-Tong, Liu Tong-Ming,Yang Jing-Yu, A new algorithm of uncorrelated discriminant vectors and its application. Proceedings of the 4th World Congress on Intelligent Control and Automation, June 2002, Shanghai, P. R. China, pp. 340–344.

    Google Scholar 

  15. Victor-Emil Neagoe, Armand-Dragos Ropot, Concurrent self-organizing maps for pattern classification. Proceedings of the First IEEE International Conference on Cognitive Informatics (ICCI'02), 2002, p. 9.

    Google Scholar 

  16. Phiasai T., Arunrungrushi S., Chamnongthai K., Face recognition system with PCA and moment invariant method, The 2001 IEEE International Symposium on Circuits and Systems, 2001, pp. II-165 - II-168.

    Google Scholar 

  17. Gan Jun-ying, Zhang You-wei, Mao Shi-yi, Applications of adaptive principal components extraction algorithm in the feature extraction of human face. Proceedings of the International Symposium on Intelligent Multimedia, Video and Speech Processing, Hong Kong, May 2001, pp. 332–335.

    Google Scholar 

  18. Bai-ling Zhang, Yan Guo, Face recognition by wavelet domain associative memory. Proceedings of the International Symposium on Intelligent Multimedia, Video and Speech Processing, Hong Kong, May 2001, pp. 481–485.

    Google Scholar 

  19. Steve Lawrence, C. Lee Giles, Ah Chung Tsoi, Andrew D. Back, Face recognition: a convolutional neural-network approach. IEEE Transactions on Neural Networks, Vol. 8, No. 1, January 1997, pp. 98–113.

    Article  Google Scholar 

  20. Guodong Guo, Stan Z. Li, Kapluk Chan, Face recognition by support vector  machines. In: Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, 2000, 28-30 March 2000, pp. 196–201.

    Google Scholar 

  21. S.-H. Lin, S.-Y. Kung, and L.-J. Lin, Face recognition/detection by probabilistic decision-based neural network, IEEE Trans. Neural Networks, Vol.8, Jan. 1997, pp. 114–132.

    Article  Google Scholar 

  22. V. Brennan and J. Principe, Face classification using multiresolution principal component analysis, in Proceedings of the IEEE Workshop Neural Networks Signal Processing, 1998, pp. 506–515.

    Google Scholar 

  23. S. Eickeler, S. Mueller, and G. Rigoll, High quality face recognition in JPEG compressed images, in Proceedings of the IEEE Int. Conf. Image Processing, 1999, pp. 672–676.

    Google Scholar 

  24. Baidyk T., Kussul E., Makeyev O., Caballero A., Ruiz L., Carrera G., Velasco G. Flat image recognition in the process of microdevice assembly. Pattern Recognition Letters. Vol. 25/1, 2004, pp.107–118.

    Article  Google Scholar 

  25. Bicego M., Castellani U., Murino V.  Using Hidden Markov Models and Wavelets for Face Recognition. Proceedings of the 12th International Conference on Image Analysis and Processing (ICIAP'03), Italy, 2003, pp. 5.

    Google Scholar 

  26. Lin S., Kung S., Lin L. Face Recognition/Detection by Probabilistic Decision-Based Neural Network. IEEE Transactions on Neural Networks, 8(1), January 1997, pp. 114–131.

    Article  Google Scholar 

  27. Guo G., Li S.Z., Kapluk C. Face Recognition by Support Vector Machines. Image and Vision Computing, 19 (9-10), 2001, pp. 631–638.

    Article  Google Scholar 

  28. Lucas S. Face Recognition with the Continuous n-tuple Classifier. Proceedings of British Machine Vision Conference, September 1997.

    Google Scholar 

  29. Kohir V., Desai U. Face Recognition Using DCT-HMM approach. Workshop on Advances in Facial Image Analysis and Recognition Technology (AFIART), Freiburg, Germany, June 1998.

    Google Scholar 

  30. Eickeler  S., Miller S., Rigolli G. Recognition of JPEG Compressed Face Images Based on Statistical Methods. Image and Vision Computing, 18, March 2000, pp. 279–287.

    Article  Google Scholar 

  31. Fukushima K., Neocognitron of a New Version: Handwritten Digit Recognition. Proceedings of the International Joint Conference on Neural Networks, Vol. 2, 2001, pp.1498–1503.

    Google Scholar 

  32. Fukushima K. Neural Network Models for Vision. Proceedings of the International Joint Conference on Neural Networks, 2003, pp.2625–2630.

    Google Scholar 

  33. Watanabe A., Andoh M., Chujo N., Harata Y. Neocognitron Capable of Position Detection and Vehicle Recognition. Proceedings of the International Joint Conference on Neural Networks, Vol. 5, 1999, pp.3170–3173.

    Google Scholar 

  34. San Kan Lee, Pau-choo Chung, et al. A Shape Cognitron Neural Network for Breast Cancer Detection. Proceedings of the International Joint Conference on Neural Networks, Vol. 1, 2002, pp. 822–827.

    Google Scholar 

  35. Perez C., Salinas C., Estévez P., Valenzuela P. Genetic Design of Biologically Inspired Receptive Fields for Neural Pattern Recognition. IEEE Transactions on System, Man, and Cybernetics, Part B: Cybernetics, Vol. 33, No. 2, April 2003, pp. 258–270.

    Article  Google Scholar 

  36. Kussul E., Baidyk T., Kussul M., 2004, Neural Network System for Face Recognition. Proceedings of the IEEE International Symposium on Circuits and Systems, ISCAS 2004, May 23-26, Vancouver, Canada, Vol. V, pp.V-768–V-771.

    Google Scholar 

  37. Rosenblatt F. Principles of Neurodynamics. Spartan Books, New York, 1962.

    MATH  Google Scholar 

  38. Hubel D., Wiesel T. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal on Physiology (Lond.), 106 (1), 1962, pp. 106–154.

    Google Scholar 

  39. Hubel D., Wiesel T. Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal on Neurophysiology, 28 (2), 1965, pp.229–289.

    Google Scholar 

  40. Plate T. Holographic reduced representations. IEEE Transactions on Neural Networks, 6, 1995, pp. 623–641.

    Article  Google Scholar 

  41. D. Rachkovskij, E. Kussul, Binding and normalization of binary sparse distributed representations by context-depending thinning. Neural Computation 13, 2001, pp. 411-452.

    Article  MATH  Google Scholar 

  42. E. M. Kussul, D. A. Rachkovskij, T. N. Baidyk, On image texture recognition by associative-projective neurocomputer. Proc. of the ANNIE'91 conference. “Intelligent engineering systems through artificial neural networks”, ed. by C.H. Dagli, S.Kumara and Y.C. Shin, ASME Press, 1991, pp. 453–458.

    Google Scholar 

  43. E.M. Kussul, D.A. Rachkovskij, T.N. Baidyk, Associative-projective neural networks: architecture, implementation, applications. Proc. of Fourth Intern. Conf. "Neural Networks & their Applications", Nimes, France, Nov. 4–8, 1991, (EC2 Publishing), pp. 463–476.

    Google Scholar 

  44. E. Kussul, T. Baidyk, Neural random threshold classifier in OCR application”, Proc. of the Second All-Ukrainian Intern. Conf., Kiev, Ukraine, 1994, pp. 154-157.

    Google Scholar 

  45. E. Kussul, T. Baidyk, V. Lukovitch, D. Rachkovskij, Adaptive high performance classifier based on random threshold neurons. In: R. Trappl (Ed.) Cybernetics and Systems '94 (Singapore: World Scientific Publishing Co. Pte. Ltd., 1994), pp. 1687–1695.

    Google Scholar 

  46. Baidyk T., Kussul E., 2004, Neural Network Based Vision System for Micro Workpieces Manufacturing. WSEAS Transactions on Systems, Issue 2, Vol. 3, April 2004, pp. 483–488.

    Google Scholar 

  47. Kussul E., Baidyk T., Wunsch D., Makeyev O., Martín A. Permutation coding technique for image recognition systems. IEEE Transactions on Neural Networks, Vol. 17/6, November 2006, pp. 1566–1579.

    Article  Google Scholar 

  48. S. Artikutsa, T. Baidyk, E. Kussul, D. Rachkovskij, Texture recognition with the neurocomputer. Preprint 91-8 of Institute of Cybernetics, Ukraine, 1991, pp. 20 (in Russian).

    Google Scholar 

  49. E. Kussul, T. Baidyk, Improved Method of Handwritten Digit Recognition Tested on MNIST Database, Image and Vision Computing, Vol. 22/12, 2004, pp. 971–981.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Kussul .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kussul, E., Baidyk, T., Wunsch, D.C. (2010). Permutation Coding Technique for Image Recognition System. In: Neural Networks and Micromechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02535-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02535-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02534-1

  • Online ISBN: 978-3-642-02535-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics