Skip to main content

Microfluidic Devices and Their Applications to Lab-on-a-Chip

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

Various microfluidic components and their characteristics, along with the demonstration of two recent achievements of lab-on-chip systems are reviewed and discussed. Many microfluidic devices and components have been developed during the past few decades, as introduced earlier for various applications. The design and development of microfluidic devices still depend on the specific purposes of the devices (actuation and sensing) due to a wide variety of application areas, which encourages researchers to develop novel, purpose-specific microfluidic devices and systems. Microfluidics is the multidisciplinary research field that requires basic knowledge in fluidics, micromachining, electromagnetics, materials, and chemistry for various applications.

Among the various application areas of microfluidics, one of the most important is the lab-on-a-chip system. Lab-on-a-chip is becoming a revolutionary tool for many different applications in chemical and biological analyses due to its fascinating advantages (fast speed and low cost) over conventional chemical or biological laboratories. Furthermore, the simplicity of lab-on-a-chip systems will enable self-testing capability for patients or health consumers by overcoming space limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

alternating-current

AC:

amorphous carbon

AP:

alkaline phosphatase

CE:

capillary electrophoresis

CE:

constant excitation

COC:

cyclic olefin copolymer

DC:

direct-current

DNA:

deoxyribonucleic acid

DRIE:

deep reactive ion etching

EDP:

ethylene diamine pyrochatechol

EHD:

elastohydrodynamic

EO:

electroosmosis

EOF:

electroosmotic flow

GOD:

glucose oxidase

HF:

hydrofluoric

HNA:

hydrofluoric-nitric-acetic

IDA:

interdigitated array

MEMS:

microelectromechanical system

MHD:

magnetohydrodynamic

NMP:

no-moving-part

PAPP:

p-aminophenyl phosphate

PC:

polycarbonate

PDMS:

polydimethylsiloxane

PE:

polyethylene

PMMA:

poly(methyl methacrylate)

POCT:

point-of-care testing

PS:

polystyrene

RF:

radiofrequency

RIE:

reactive-ion etching

SMA:

shape memory alloy

TMAH:

tetramethyl ammonium hydroxide

bioMEMS:

biomedical microelectromechanical system

mTAS:

micro total analysis system

sPROM:

structurally programmable microfluidic system

References

  1. L. Ristic, H. Hughes, F. Shemansky: Bulk micromachining technology. In: Sensor Technology and Devices, ed. by L. Ristic (Artech House, Norwood 1994) pp. 49–93

    Google Scholar 

  2. M. Esashi, M. Takinami, Y. Wakabayashi, K. Minami: High-rate directional deep dry etching for bulk silicon micromachining, J. Micromech. Microeng. 5, 5–10 (1995)

    Article  Google Scholar 

  3. H. Jansen, M. de Boer, R. Legtenberg, M. Elwenspoek: The black silicon method: A universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control, J. Micromech. Microeng. 5, 115–120 (1995)

    Article  Google Scholar 

  4. Z.L. Zhang, N.C. MacDonald: A RIE process for submicron silicon electromechanical structures, J. Micromech. Microeng. 2, 31–38 (1992)

    Article  Google Scholar 

  5. C. Linder, T. Tschan, N.F. de Rooij: Deep dry etching techniques as a new IC compatible tool for silicon micromachining, Technical Digest 6th Int. Conf. Solid-State Sens. Actuators (Transducers ʼ91), San Francisco June 24–27, 1991 (IEEE, Piscataway 1991) 524–527

    Google Scholar 

  6. D.J. Harrison, A. Manz, Z. Fan, H. Ludi, H.M. Widmer: Capillary electrophoresis and sample injection systems integrated on a planar glass chip, Anal. Chem. 64, 1926–1932 (1992)

    Article  Google Scholar 

  7. A. Manz, D.J. Harrison, E.M.J. Verpoorte, J.C. Fettinger, A. Paulus, H. Ludi, H.M. Widmer: Planar chips technology for miniaturization and integration of separation technique into monitoring systems, J. Chromatogr. 593, 253–258 (1992)

    Article  Google Scholar 

  8. T.R. Dietrich, W. Ehrfeld, M. Lacher, M. Krämer, B. Speit: Fabrication technologies for microsystems utilizing photoetchable glass, Microelectron. Eng. 30, 497–504 (1996)

    Article  Google Scholar 

  9. S.C. Jacobson, R. Hergenroder, L.B. Koutny, J.M. Ramsey: Open channel electrochromatography on a microchip, Anal. Chem. 66, 2369–2373 (1994)

    Article  Google Scholar 

  10. E.W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Munchmeyer: Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process), Microelectron. Eng. 4, 35–36 (1986)

    Article  Google Scholar 

  11. M.G. Allen: Polyimide-based process for the fabrication of thick electroplated microstructures, Proc. 7th Int. Conf Solid-State Sens. Actuators (Transducers ʼ93), Yokohama June 7–10, 1993 (IEE of Japan, Tokyo 1993) 60–65

    Google Scholar 

  12. C.H. Ahn, M.G. Allen: A fully integrated surface micromachined magnetic microactuator with a multilevel meander magnetic core, IEEE/ASME J. Microelectromech. Syst. (MEMS) 2, 15–22 (1993)

    Article  Google Scholar 

  13. C.S. Effenhauser, G.J.M. Bruin, A. Paulus, M. Ehrat: Integrated capillary electrophoresis on flexible silicone microdevices: Analysis of DNA restriction fragments and detection of single DNA molecules on microchips, Anal. Chem. 69, 3451–3457 (1997)

    Article  Google Scholar 

  14. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides: Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), Anal. Chem. 70, 4974–4984 (1998)

    Article  Google Scholar 

  15. L. Martynova, L. Locascio, M. Gaitan, G.W. Kramer, R.G. Christensen, W.A. MacCrehan: Fabrication of plastic microfluid channels by imprinting methods, Anal. Chem. 69, 4783–4789 (1997)

    Article  Google Scholar 

  16. H. Becker, W. Dietz, P. Dannberg: Microfluidic manifolds by polymer hot embossing for micro-TAS applications, Proc. Micro-Total Anal. Syst. ʼ98, Banff, Canada 1998, ed. by D.J. Harrison, A. van den Berg (Kluwer, Dordrecht 1998) 253–256

    Google Scholar 

  17. H. Becker, U. Heim: Hot embossing as a method for the fabrication of polymer high aspect ratio structures, Sens. Actuators A 83, 130–135 (2000)

    Article  Google Scholar 

  18. R.M. McCormick, R.J. Nelson, M.G. Alonso-Amigo, J. Benvegnu, H.H. Hooper: Microchannel electrophoretic separations of DNA in injection-molded plastic substrates, Anal. Chem. 69, 2626–2630 (1997)

    Article  Google Scholar 

  19. C.H. Ahn, A. Puntambekar, S.M. Lee, H.J. Cho, C.-C. Hong: Structurally programmable microfluidic systems, Proc. Micro-Total Anal. Syst. 2000, Enschede 2000, ed. by A. van den Berg, W. Olthius, P. Bergveld (Kluwer, Dordrecht 2000) 205–208

    Google Scholar 

  20. W. Schomburg, B. Scherrer: 3.5 mm thin valves in titanium membranes, J. Micromech. Microeng. 2, 184–186 (1992)

    Article  Google Scholar 

  21. A. Ilzofer, B. Ritter, C. Tsakmasis: Development of passive microvalves by the finite element method, J. Micromech. Microeng. 5, 226–230 (1995)

    Article  Google Scholar 

  22. B. Paul, T. Terharr: Comparison of two passive microvalve designs for microlamination architectures, J. Micromech. Microeng. 10, 15–20 (2000)

    Article  Google Scholar 

  23. S. Shoji, M. Esashi: Microflow device and systems, J. Micromech. Microeng. 4, 157–171 (1994)

    Article  Google Scholar 

  24. G.T.A. Kovacs: Micromachined Transducers Sourcebook (McGraw–Hill, New York 1998)

    Google Scholar 

  25. W. Schomburg, J. Fahrenberg, D. Maas, R. Rapp: Active valves and pumps for microfluidics, J. Micromech. Microeng. 3, 216–218 (1993)

    Article  Google Scholar 

  26. K. Hosokawa, R. Maeda: A pneumatically-actuated three way microvalve fabricated with polydimethylsiloxane using the membrane transfer technique, J. Micromech. Microeng. 10, 415–420 (2000)

    Article  Google Scholar 

  27. J. Fahrenberg, W. Bier, D. Maas, W. Menz, R. Ruprecht, W. Schomburg: A microvalve system fabricated by thermoplastic molding, J. Micromech. Microeng. 5, 169–171 (1995)

    Article  Google Scholar 

  28. C. Goll, W. Bacher, B. Bustgens, D. Maas, W. Menz, W. Schomburg: Microvalves with bistable buckled diaphragms, J. Micromech. Microeng. 6, 77–79 (1996)

    Article  Google Scholar 

  29. A. Ruzzu, J. Fahrenberg, M. Heckele, T. Schaller: Multi-functional valve components fabricated by combination of LIGA process and high precision mechanical engineering, Microsyst. Technol. 4, 128–131 (1998)

    Article  Google Scholar 

  30. K. Sato, M. Shikida: An electrostatically actuated gas valve with S-shaped film element, J. Micromech. Microeng. 4, 205–209 (1994)

    Article  Google Scholar 

  31. J. Robertson, K.D. Wise: A low pressure micromachined flow modulator, Sens. Actuators A 71, 98–106 (1998)

    Article  Google Scholar 

  32. D.J. Sadler, K.W. Oh, C.H. Ahn, S. Bhansali, H.T. Henderson: A new magnetically actuated microvalve for liquid and gas control applications, Proc. 6th Int. Conf. Solid-State Sens. Actuators (Transducers ʼ99), Sendai 1999 (IEE of Japan, Tokyo 1999) 1812–1815

    Google Scholar 

  33. W. Wijngaart, H. Ask, P. Enoksson, G. Stemme: A high-stroke, high-pressure electrostatic actuator for valve applications, Sens. Actuators A 100, 264–271 (2002)

    Article  Google Scholar 

  34. T. Watanabe, H. Kuwano: A microvalve matrix using piezoelectric actuators, Microsyst. Technol. 3, 107–111 (1997)

    Article  Google Scholar 

  35. M. Stehr, S. Messner, H. Sandmaier, R. Zangerle: The VAMP – A new device for handling liquids and gases, Sens. Actuators A 57, 153–157 (1996)

    Article  Google Scholar 

  36. W. Jackson, H. Tran, M. OʼBrien, E. Rabinovich, G. Lopez: Rapid prototyping of active microfluidic components based on magnetically modified elastomeric materials, J. Vac. Sci. Technol. B 19, 596 (2001)

    Article  Google Scholar 

  37. M. Kohl, K. Skrobanek, S. Miyazaki: Development of stress-optimized shape memory microvalves, Sens. Actuators A 72, 243–250 (1999)

    Article  Google Scholar 

  38. C. Neagu, J. Gardeniers, M. Elwenspoek, J. Kelly: An electrochemical active valve, Electrochem. Acta 42, 3367–3373 (1997)

    Article  Google Scholar 

  39. K. Yoshida, M. Kikuchi, J. Park, S. Yokota: Fabrication of micro-electro-rheological valves (ER valves) by micromachining and experiments, Sens. Actuators A 95, 227–233 (2002)

    Article  Google Scholar 

  40. N. Jeon, D. Chiu, C. Wargo, H. Wu, I. Choi, J. Anderson, G.M. Whitesides: Design and fabrication of integrated passive valves and pumps for flexible polymer 3-dimensional microfluidic systems, Biomed. Microdevices 4, 117–121 (2002)

    Article  Google Scholar 

  41. M. Koch, N. Harris, A. Evans, N. White, A. Brunnschweiler: A novel micropump design with thick-film piezoelectric actuation, Meas. Sci. Technol. 8, 49–57 (1997)

    Article  Google Scholar 

  42. L. Cao, S. Mantell, D. Polla: Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology, Sens. Actuators A 94, 117–125 (2001)

    Article  Google Scholar 

  43. J. Park, K. Yoshida, S. Yokota: Resonantly driven piezoelectric micropump fabrication of a micropump having high power density, Mechatronics 9, 687–702 (1999)

    Article  Google Scholar 

  44. M. Koch, A. Evans, A. Brunnschweiler: The dynamic micropump driven with a screen printed PZT actuator, J. Micromech. Microeng. 8, 119–122 (1998)

    Article  Google Scholar 

  45. D. Xu, L. Wang, G. Ding, Y. Zhou, A. Yu, B. Cai: Characteristics and fabrication of NiTi/Si diaphragm micropump, Sens. Actuators A 93, 87–92 (2001)

    Article  Google Scholar 

  46. E. Makino, T. Mitsuya, T. Shibata: Fabrication of TiNi shape memory micropump, Sens. Actuators A 88, 256–262 (2001)

    Article  Google Scholar 

  47. H. Chou, M. Unger, S. Quake: A microfabricated rotary pump, Biomed. Microdevices 3, 323–330 (2001)

    Article  Google Scholar 

  48. R. Zengerle, J. Ulrich, S. Kulge, M. Richter, A. Richter: A bidirectional silicon micropump, Sens. Actuators A 50, 81–86 (1995)

    Article  Google Scholar 

  49. M. Carrozza, N. Croce, B. Magnani, P. Dario: A piezoelectric driven stereolithography-fabricated micropump, J. Micromech. Microeng. 5, 177–179 (1995)

    Article  Google Scholar 

  50. H. Andersson, W. Wijngaart, P. Nilsson, P. Enoksson, G. Stemme: A valveless diffuser micropump for microfluidic analytical systems, Sens. Actuators B 72, 259–265 (2001)

    Article  Google Scholar 

  51. F. Forster, R. Bardell, M. Afromowitz, N. Sharma: Design, fabrication and testing of fixed-valve micropumps, Proc. ASME Fluids Engineering Division, ASME Int. Mech. Eng. Congr. Expo. 234, 39–44 (1995)

    Google Scholar 

  52. T. Thorsen, S.J. Maerkl, S.R. Quake: Monolithic microfabricated valves and pumps by multilayer soft lithography, Science 288, 113–116 (2000)

    Article  Google Scholar 

  53. T. Thorsen, S.J. Maerkl, S.R. Quake: Microfluidic large-scale integration, Science 298, 580–584 (2002)

    Article  Google Scholar 

  54. J.W. Hong, V. Studer, G. Hang, W.F. Anderson, S.R. Quake: A nanoliter-scale nucleic acid processor with parallel architecture, Nature Biotechnol. 22, 435–439 (2004)

    Article  Google Scholar 

  55. J.C. Love, J.R. Anderson, G.M. Whitesides: Fabrication of three-dimensional microfluidic systems by soft lithography, MRS Bulletin 7, 523–528 (2001)

    Article  Google Scholar 

  56. G. Fuhr, T. Schnelle, B. Wagner: Travelling wave driven microfabricated electrohydrodynamic pumps for liquids, J. Micromech. Microeng. 4, 217–226 (1994)

    Article  Google Scholar 

  57. J. Jang, S. Lee: Theoretical and experimental study of MHD micropump, Sens. Actuators A 80, 84–89 (2000)

    Article  Google Scholar 

  58. A. Lemoff, A.P. Lee: An AC magnetohydrodynamic micropump, Sens. Actuators B 63, 178–185 (2000)

    Article  Google Scholar 

  59. J. DeSimone, G. York, J. McGrath: Synthesis and bulk, surface and microlithographic characterization of poly(1-butene sulfone)-g-poly(dimethylsiloxane), Macromolecules 24, 5330–5339 (1994)

    Article  Google Scholar 

  60. A. Wego, L. Pagel: A self-filling micropump based on PCB technology, Sens. Actuators A 88, 220–226 (2001)

    Article  Google Scholar 

  61. A. Terray, J. Oakey, D. Marr: Fabrication of colloidal structures for microfluidic applications, Appl. Phys. Lett. 81, 1555–1557 (2002)

    Article  Google Scholar 

  62. A. Puntambekar, J.-W. Choi, C.H. Ahn, S. Kim, V.B. Makhijani: Fixed-volume metering microdispenser module, Lab Chip 2, 213–218 (2002)

    Article  Google Scholar 

  63. M. Madou, Y. Lu, S. Lai, C. Koh, L. Lee, B. Wenner: A novel design on a CD disc for 2-point calibration measurement, Sens. Actuators A 91, 301–306 (2001)

    Google Scholar 

  64. K. Handique, D. Burke, C. Mastrangelo, C. Burns: On-chip thermopneumatic pressure for discrete drop pumping, Anal. Chem. 73, 1831–1838 (2001)

    Article  Google Scholar 

  65. H. Andersson, W. Wijngaart, P. Griss, F. Niklaus, G. Stemme: Hydrophobic valves of plasma deposited octafluorocyclobutane in DRIE channels, Sens. Actuators B 75, 136–141 (2001)

    Article  Google Scholar 

  66. L. Low, S. Seetharaman, K. He, M. Madou: Microactuators toward microvalves for responsive controlled drug delivery, Sens. Actuators B 67, 149–160 (2000)

    Article  Google Scholar 

  67. Q. Yu, J. Bauer, J. Moore, D. Beebe: Responsive biomimetic hydrogel valve for microfluidics, Appl. Phys. Lett. 78, 2589–2591 (2001)

    Article  Google Scholar 

  68. C.-C. Hong, J.-W. Choi, C.H. Ahn: A novel in-plane passive microfluidic mixer with modified Tesla structures, Lab. Chip 4, 109–113 (2004)

    Article  Google Scholar 

  69. M. Mitchell, V. Spikmans, F. Bessoth, A. Manz, A. de Mello: Towards organic synthesis in microfluidic devices: Multicomponent reactions for the construction of compound libraries, Proc. Micro-Total Anal. Syst. 2000, Enschede 2000, ed. by A. van den Berg, W. Olthius, P. Bergveld (Kluwer, Dordrecht 2000) 463–465

    Google Scholar 

  70. D. Beebe, R. Adrian, M. Olsen, M. Stremler, H. Aref, B. Jo: Passive mixing in microchannels: Fabrication and flow experiments, Mec. Ind. 2, 343–348 (2001)

    Google Scholar 

  71. A. Stroock, S. Dertinger, A. Ajdari, I. Mezic, H. Stone, G.M. Whitesides: Chaotic mixer for microchannels, Science 295, 647–651 (2002)

    Article  Google Scholar 

  72. J. Brody, P. Yager: Diffusion-based extraction in a microfabricated device, Sens. Actuators A 54, 704–708 (1996)

    Article  Google Scholar 

  73. B. Weigl, P. Yager: Microfluidic diffusion-based separation and detection, Science 283, 346–347 (1999)

    Article  Google Scholar 

  74. A. Puntambekar, J.-W. Choi, C.H. Ahn, S. Kim, S. Bayyuk, V.B. Makhijani: An air-driven fluidic multiplexer integrated with microdispensers, Proc. μTAS 2001 Symp., Monterey 2001, ed. by J.M. Ramsey, A. van den Berg (Kluwer, Dordrecht 2001) 78–80

    Google Scholar 

  75. T. Nagakura, K. Ishihara, T. Furukawa, K. Masuda, T. Tsuda: Auto-regulated osmotic pump for insulin therapy by sensing glucose concentration without energy supply, Sens. Actuators B 34, 229–233 (1996)

    Article  Google Scholar 

  76. Y. Su, L. Lin, A. Pisano: Water-powered osmotic microactuator, Proc. of the 14th IEEE MEMS Workshop (MEMS 2001), Interlaken 2001 (IEEE, Piscataway) pp. 393–396

    Google Scholar 

  77. G.M. Walker, D.J. Beebe: A passive pumping method for microfluidic devices, Lab Chip 2, 131–134 (2002)

    Article  Google Scholar 

  78. C. Effenhauser, H. Harttig, P. Kramer: An evaporation-based disposable micropump concept for continuous monitoring applications, Biomed. Microdevices 4, 27–32 (2002)

    Article  Google Scholar 

  79. J.-W. Choi, K.W. Oh, A. Han, N. Okulan, C.A. Wijayawardhana, C. Lannes, S. Bhansali, K.T. Schlueter, W.R. Heineman, H.B. Halsall, J.H. Nevin, A.J. Helmicki, H.T. Henderson, C.H. Ahn: Development and characterization of microfluidic devices and systems for magnetic bead-based biochemical detection, Biomed. Microdevices 3, 191–200 (2001)

    Article  Google Scholar 

  80. J.-W. Choi, K.W. Oh, J.H. Thomas, W.R. Heineman, H.B. Halsall, J.H. Nevin, A.J. Helmicki, H.T. Henderson, C.H. Ahn: An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities, Lab Chip 2, 27–30 (2002)

    Article  Google Scholar 

  81. C.H. Ahn, H.T. Henderson, W.R. Heineman, H.B. Halsall: Development of a generic microfluidic system for electrochemical immunoassay-based remote bio/chemical sensors, Proc. Micro-Total Anal. Syst. ʼ98, Banff, Canada 1998, ed. by D.J. Harrison, A. van den Berg (Kluwer, Dordrecht 1998) pp. 225–230

    Google Scholar 

  82. J.-W. Choi, C.H. Ahn, S. Bhansali, H.T. Henderson: A new magnetic bead-based, filterless bio-separator with planar electromagnet surfaces for integrated bio-detection systems, Sens. Actuators B 68, 34–39 (2000)

    Article  Google Scholar 

  83. O. Niwa, Y. Xu, H.B. Halsall, W.R. Heineman: Small-volume voltammetric detection of 4-aminophenol with interdigitated array electrodes and its application to electrochemical enzyme immunoassay, Anal. Chem. 65, 1559–1563 (1993)

    Article  Google Scholar 

  84. K.W. Oh, A. Han, S. Bhansali, H.T. Henderson, C.H. Ahn: A low-temperature bonding technique using spin-on fluorocarbon polymers to assemble microsystems, J. Micromech. Microeng. 12, 187–191 (2002)

    Article  Google Scholar 

  85. C.-C. Hong, J.-W. Choi, C.H. Ahn: An on-chip air-bursting detonator for driving fluids on disposable lab-on-a-chip systems, J. Micromech. Microeng. 17, 410–417 (2007)

    Article  Google Scholar 

  86. C. Gao, J.-W. Choi, M. Dutta, S. Chilukuru, J.H. Nevin, J.Y. Lee, M.G. Bissell, C.H. Ahn: A fully integrated biosensor array for measurement of metabolic parameters in human blood, Proc. 2nd Annu. Int. IEEE–EMBS Spec. Top. Conf. Microtechnol. Med. Biol., Madison May 2–4, 2002, ed. by A. Dittmar, D. Beebe (IEEE, New York 2002) pp. 223–226

    Google Scholar 

  87. C.H. Ahn, J.-W. Choi, G. Beaucage, J.H. Nevin, J.-B. Lee, A. Puntambekar, J.Y. Lee: Disposable Smart Lab on a Chip for Point-of-Care Clinical Diagnostics, Proc. IEEE (2004) pp. 154–173

    Google Scholar 

  88. J. Do, C.H. Ahn: A polymer lab-on-a-chip for magnetic immunoassay with on-chip sampling and detection capabilities, Lab. Chip 8, 542–549 (2008)

    Article  Google Scholar 

  89. J. Han, S.H. Lee, A. Puntambekar, S. Murugesan, J.-W. Choi, G. Beaucage, C.H. Ahn: UV adhesive bonding techniques at room temperature for plastic lab-on-a-chip, Proc. 7th Int. Conf. Micro Total Anal. Syst. (μ-TAS), Squaw Valley 2003, ed. by M.A. Northrup, K.F. Jensen, D.J. Harrison (Transducers Research Foundation, Cleveland 2003) pp. 1113–1116

    Google Scholar 

  90. J. Do, J.-W. Choi, C.H. Ahn: Low-cost magnetic interdigitated array on a plastic wafer, IEEE Trans. Magn. 40, 3009–3011 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chong H. Ahn or Jin-Woo Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Ahn, C.H., Choi, JW. (2010). Microfluidic Devices and Their Applications to Lab-on-a-Chip. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02525-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02525-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02524-2

  • Online ISBN: 978-3-642-02525-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics