Skip to main content

Perception of Harmonic and Inharmonic Sounds: Results from Ear Models

  • Conference paper
Computer Music Modeling and Retrieval. Genesis of Meaning in Sound and Music (CMMR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5493))

Included in the following conference series:

Abstract

We report on experiments in which musically relevant harmonic and inharmonic sounds have been fed into computer-based ear models (or into modules which at least simulate parts of the peripheral auditory system) working either in the frequency or in the time domain. For a major chord in just intonation, all algorithms produced reliable and interpretable output, which explains mechanisms of pitch perception. One model also yields data suited to demonstrate how sensory consonance and ’fusion’ are contained in the ACF of the neural activity pattern.

With musical sounds from instruments (carillon, gamelan) which represent different degrees of inharmonicity, the performance of the modules reflects difficulties in finding correct spectral and/or virtual pitch(es) known also from behavioral experiments. Our measurements corroborate findings from neurophysiology according to which much of the neural processing relevant for perception of pitch and consonance is achieved subcortically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachmann, W.: Signalanalyse. Grundlagen und mathematische Verfahren. Vieweg, Braunschweig (1992)

    Google Scholar 

  2. Bader, R.: Additional modes in transients of a Balinese gender dasa plate. Journal of the Acoust. Soc. of America 116, 2621 (2004) (abstract)

    Article  Google Scholar 

  3. Bader, R.: Computational Mechanics of the classical guitar. Springer, Berlin (2005)

    Google Scholar 

  4. Balaban, M., Ebcioglu, K., Laske, O.: Understanding Music with AI: Perspectives on Music cognition. The AAAI Pr./MIT Pr., Menlo Park/Cambridge (1992)

    Google Scholar 

  5. Boersma, P.: Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise-ratio of sampled sound. Proc. of the Inst. of Phonetic Sciences 17, 97–110 (1993)

    Google Scholar 

  6. Boersma, P., Weenink, D.: Praat: doing phonetics by computer. Version 5.038 (2008)

    Google Scholar 

  7. Bregman, A.: Auditory Scene Analysis. In: The perceptual organization of sound. MIT Pr., Cambridge (1990)

    Google Scholar 

  8. Cariani, P., Delgutte, B.: Neural Correlates of the pitch of complex tones. I: Pitch and pitch salience. Journal of Neurophysiology 76, 1698–1716 (1996)

    Google Scholar 

  9. Cariani, P., Delgutte, B.: Neural Correlates of the pitch of complex tones. II: Pitch shift, pitch ambiguity, phase invariance, pitch circularity, and the dominance region for pitch. Journal of Neurophysiology 76, 1717–1734 (1996)

    Google Scholar 

  10. Clarke, E.: Ways of Listening. A ecological approach to the perception of musical meaning. Oxford U. Pr., London (2005)

    Book  Google Scholar 

  11. Cohen, M., Grossberg, S., Wyse, L.: A spectral network model of pitch perception. Journal of the Acoust. Soc. of America 98, 862–879 (1995)

    Article  Google Scholar 

  12. de Boer, E.: On the “Residue” and auditory pitch perception. In: Keidel, W.D., Neff, W.D. (eds.) Handbook of Sensory physiology, ch. 13, vol. V, 3. Springer, Berlin (1976)

    Google Scholar 

  13. de Cheveigné, A.: Pitch perception models. In: Plack, C., et al. (eds.) Pitch. Neural coding and perception, pp. 169–233 (2005)

    Google Scholar 

  14. de Ribaupierre, F.: Acoustical information processing in the auditory thalamus and cerebral cortex. In: Ehret, G., Romand, R. (eds.) The Central Auditory System, ch. 5, pp. 317–388. Oxford U. Pr., Oxford (1997)

    Google Scholar 

  15. Ehret, G.: The auditory midbrain, a “shunting yard” of acoustical information processing. In: Ehret, G., Romand, R. (eds.) The Central Auditory System, ch. 4, pp. 259–316. Oxford U. Pr., Oxford (1997)

    Google Scholar 

  16. Handel, S.: Listening. An Introduction to the perception of auditory events. MIT Pr., Cambridge (1989)

    Google Scholar 

  17. Hartmann, W.: Signals, Sound, and Sensation. Springer, New York (1998)

    Google Scholar 

  18. Hermes, D.: Measurement of pitch by subharmonic matching. Journal of the Acoust. Soc. of America 83, 257–264 (1988)

    Article  Google Scholar 

  19. Hesse, H.-P.: Die Wahrnehmung von Tonhöhe und Klangfarbe als Problem der Hörtheorie. A. Volk, Köln (1972)

    Google Scholar 

  20. Hesse, H.-P.: The Judgment of musical intervals. In: Clynes, M. (ed.) Music, mind and brain, pp. 217–225. Plenum Pr., New York (1982)

    Chapter  Google Scholar 

  21. Houtsma, A.: Pitch perception. In: Moore, B. (ed.) Hearing, 2nd edn., pp. 267–295. Academic Pr., London (1995)

    Chapter  Google Scholar 

  22. Keidel, W.-D.: Biokybernetik des Menschen. Wiss. Buchges, Darmstadt (1989)

    Google Scholar 

  23. Keidel, W.-D.: Das Phänomen des Hörens. Ein interdisziplinärer Diskurs. Naturwissenschaften 79, 300–310, 347–357 (1992)

    Article  Google Scholar 

  24. Keiler, F., Karadogan, C., Zölzer, U., Schneider, A.: Analysis of transient musical sounds by auto-regressive modeling. In: Proc. 6th Intern. Conf. on Digital Audio Effects DAFx 2003, pp. 301–304. Queen Mary, Univ. of London, London (2003)

    Google Scholar 

  25. Krumhansl, C.: Cognitive Foundations of musical Pitch. Oxford U. Pr., Oxford (1998)

    Google Scholar 

  26. Langner, G.: Die zeitliche Verarbeitung periodischer Signale im Hörsystem: Neuronale Repräsentation von Tonhöhe, Klang und Harmonizität. Zeitschrift für Audiologie 46, 8–21 (2007)

    Google Scholar 

  27. Leman, M.: Music and Schema theory. Cognitive foundations of systematic musicology. Springer, Berlin (1995)

    Book  Google Scholar 

  28. Lopez-Poveda, E.: Spectral processing by the peripheral auditory system: facts and models. Intern. Rev. of Neurobiology 70, 7–48 (2005)

    Article  Google Scholar 

  29. Lopez-Poveda, E., Meddis, R.: A human nonlinear cochlear filterbank. Journal of the Acoust. Soc. of America 110, 3107–3118 (2001)

    Article  Google Scholar 

  30. Lyon, R., Shamma, S.: Auditory representations of timbre and pitch. In: Hawkins, H., McMullen, T., Popper, A., Fay, R. (eds.) Auditory Computation, ch. 6, pp. 221–270. Springer, New York (1996)

    Chapter  Google Scholar 

  31. McAdams, S., Bigand, E. (eds.): Thinking in Sound. The Cognitive psychology of human audition. Clarendon Pr., Oxford (1993)

    Google Scholar 

  32. Meddis, R., Hewitt, M.: Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I: Pitch identification. Journal of the Acoust. Soc. of America 89, 2866–2882 (1991a)

    Article  Google Scholar 

  33. Meddis, R., Hewitt, M.: Virtual pitch and phase sensitivity of a computer model of the auditory periphery. II: Phase sensitivity. Journal of the Acoust. Soc. of America 89, 2883–2894 (1991b)

    Article  Google Scholar 

  34. Meddis, R., O’Mard, L.: A unitary model of pitch perception. Journal of the Acoust. Soc. of America 102, 1811–1820 (1997)

    Article  Google Scholar 

  35. Meddis, R., O’Mard, L.: AMS Tutorial (Version 2.3). Univ. of Essex, Dept. of Psychol., Colchester (2003)

    Google Scholar 

  36. Meddis, R.: Auditory-nerve first-spike latency and auditory absolute threshold: a computer model. Journal of the Acoust. Soc. of America 119, 406–417 (2006)

    Article  Google Scholar 

  37. Musacchia, G., Sams, M., Skoe, E., Kraus, N.: Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proc. Nat. Acad. Science 104(40), 15894–15898 (2007)

    Article  Google Scholar 

  38. Patterson, R., Allerhand, M., Giguère, C.: Time-domain modeling of peripheral auditory processing: a modular architecture and a software platform. Journal of the Acoust. Soc. of America 98, 1890–1894 (1995)

    Article  Google Scholar 

  39. Plack, C., Oxenham, A.: The Psychophysics of pitch. In: Plack, C., et al. (eds.) Pitch. Neural coding and perception, pp. 7–55. Springer, New York (2005)

    Google Scholar 

  40. Plack, C., Oxenham, A., Fay, R., Popper, A. (eds.): Pitch. Neural Coding and Perception. Springer, New York (2005)

    Google Scholar 

  41. Popper, A., Fay, R. (eds.): The Mammalian Auditory Pathway: Neurophysiology. Springer, Berlin (1992)

    Google Scholar 

  42. Rameau, J.-P.: Traité de l’harmonie. Ballard, Paris (1722)

    Google Scholar 

  43. Rameau, J.-P.: Génération harmonique ou traité de musique théorique et pratique. Prault fils, Paris (1737)

    Google Scholar 

  44. Roberts, B.: Spectral pattern, grouping, and the pitches of complex tones and their components. Acta Acustica united with Acustica 91, 945–957 (2005)

    Google Scholar 

  45. Schneider, A.: Verschmelzung, tonal fusion, and consonance: Carl Stumpf revisited. In: Leman, M. (ed.) Music, Gestalt, and Computing. Studies in Cognitive and Systematic Musicology, pp. 117–143. Springer, Berlin (1997a)

    Google Scholar 

  46. Schneider, A.: Tonhöhe - Skala - Klang. Akustische, tonometrische und psychoakustische Studien auf vergleichender Grundlage. Orpheus-Verlag, Bonn (1997b)

    Google Scholar 

  47. Schneider, A.: Inharmonic Sounds: implications as to ‘Pitch’, ‘Timbre’ and ‘Consonance’. Journal of New Music Research 29, 275–301 (2000a)

    Article  Google Scholar 

  48. Schneider, A.: Virtual Pitch and musical instrument acoustics: the case of idiophones. In: Enders, B., Stange-Elbe, J. (eds.) Musik im virtuellen Raum. KlangArt-Kongreß, pp. 397–417. Rasch, Osnabrück (2000b)

    Google Scholar 

  49. Schneider, A.: Complex inharmonic sounds, perceptual ambiguity, and musical imagery. In: Godøy, R.I., Jørgensen, H. (eds.) Musical Imagery, pp. 95–116. Swets & Zeitlinger, Lisse, Abingdon (2001a)

    Google Scholar 

  50. Schneider, A.: Sound, Pitch, and Scale: From “Tone measurements” to sonological analysis in ethnomusicology. Ethnomusicology 45, 489–519 (2001b)

    Article  Google Scholar 

  51. Schneider, A.: Foundations of Systematic Musicology: a study in history and theory. In: Schneider, A. (ed.) Systematic and Comparative Musicology: concepts, methods, findings, pp. 11–61. P. Lang, Frankfurt/M. (2008)

    Google Scholar 

  52. Schneider, A., Leman, M.: Sonological and psychoacoustic Characteristics of carillon bells. In: Leman, M. (ed.) The quality of bells. Brugge Eurocarillon 2002 (=Proc. Of the 16th Meeting of the FWO Research Soc. on Foundations of Music research). IPEM, Univ. of Ghent, Ghent (2002)

    Google Scholar 

  53. Schneider, A., Bader, R.: Akustische Grundlagen musikalischer Klänge. In: Mitteilungen der Math. Ges. in Hamburg Bd XXII, pp. 27–44 (2003)

    Google Scholar 

  54. Schulze, H., Neubauer, H., Ohl, F., Hess, A., Scheich, H.: Representation of stimulus periodicity in the auditory cortex: recent findings and new perspectives. Acta Acustica united with Acustica 88, 399–407 (2002)

    Google Scholar 

  55. Sinex, D.: Spectral processing and sound source determination. International Review of Neurobiology 70, 371–398 (2005)

    Article  Google Scholar 

  56. Sloboda, J.: The musical Mind. The Cognitive Psychology of Music. Clarendon Pr., Oxford (1985)

    Google Scholar 

  57. Stumpf, C.: Tonpsychologie, Bd 2. J. Barth, Leipzig (1890)

    Google Scholar 

  58. Stumpf, C.: Die Sprachlaute. J. Springer, Berlin (1926)

    Book  Google Scholar 

  59. Terhardt, E.: Calculating virtual pitch. Hearing Research 1, 155–182 (1989)

    Article  Google Scholar 

  60. Terhardt, E.: Akustische Kommunikation. Springer, Berlin (1998)

    Book  Google Scholar 

  61. Terhardt, E., Seewann, M.: Pitch of complex signals according to virtual-pitch theory: tests, examples, and predictions. Journal of the Acoust. Soc. of America 71, 671–678 (1982a)

    Article  Google Scholar 

  62. Terhardt, E., Seewann, M.: Algorithm for extraction of pitch salience from complex tonal signals. Journal of the Acoust. Soc. of America 71, 679–688 (1982b)

    Article  Google Scholar 

  63. Terhardt, E., Seewann, M.: Auditive und objektive Bestimmung der Schlagtonhöhe von historischen Kirchenglocken. Acustica 54, 129–144 (1984)

    Google Scholar 

  64. Tramo, M., Cariani, P., Delgutte, B., Braida, L.: Neurobiological Foundations for the theory of harmony in Western tonal music. In: Zatorre, R., Peretz, I. (eds.) The Biological Foundations of music (=Annals of the N.Y. Acad. of Sciences), vol. 930, pp. 92–116. New York Acad. of Sciences, New York (2001)

    Google Scholar 

  65. Wever, E.: Theory of hearing. Wiley, New York (1949)

    Google Scholar 

  66. Wiener, N.: Cybernetics or control and communication in the animal and in the machine, 2nd edn. MIT Pr., New York (1961)

    Book  MATH  Google Scholar 

  67. Yost, W.: Determining an auditory scene. In: Gazzaniga, M. (ed.) The Cognitive Neurosciences, 3rd edn., ch. 28, pp. 385–396. MIT PR., Cambridge (2004)

    Google Scholar 

  68. Zwicker, E., Fastl, H.: Psychophysics. In: Facts and Models, 2nd edn. Springer, Berlin (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schneider, A., Frieler, K. (2009). Perception of Harmonic and Inharmonic Sounds: Results from Ear Models. In: Ystad, S., Kronland-Martinet, R., Jensen, K. (eds) Computer Music Modeling and Retrieval. Genesis of Meaning in Sound and Music. CMMR 2008. Lecture Notes in Computer Science, vol 5493. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02518-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02518-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02517-4

  • Online ISBN: 978-3-642-02518-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics