Skip to main content

Modeling Failure Propagation in Large-Scale Engineering Networks

  • Conference paper

Abstract

The simultaneous unavailability of several technical components within large-scale engineering systems can lead to high stress, rendering them prone to cascading events. In order to gain qualitative insights into the failure propagation mechanisms resulting from independent outages, we adopt a minimalistic model representing the components and their interdependencies by an undirected, unweighted network. The failure dynamics are modeled by an anticipated accelerated “wearout” process being dependent on the initial degree of a node and on the number of failed nearest neighbors. The results of the stochastic simulations imply that the influence of the network topology on the speed of the cascade highly depends on how the number of failed nearest neighbors shortens the life expectancy of a node. As a formal description of the decaying networks we propose a continuous-time mean field approximation, estimating the average failure rate of the nearest neighbors of a node based on the degree-degree distribution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gheorghe, A.V., Masera, M., Weijnen, M., De Vries, L.: Critical Infrastructures at Risk - Securing the European Electric Power System. Springer, Dordrecht (2006)

    Book  Google Scholar 

  2. Sachtjen, M.L., Carreras, B.A., Lynch, V.E.: Disturbances in a power transmission system. Phys. Rev. E 61, 4877–4882 (2000)

    Article  Google Scholar 

  3. Albert, R., Albert, I., Nakarado, G.L.: Structural vulnerability of the North American power grid. Phys. Rev. E 69, 025103 (2004)

    Article  Google Scholar 

  4. Holmgren, A.J.: Using graph models to analyze the vulnerability of electric power networks. Risk Analysis 26(4), 955–969 (2006)

    Article  Google Scholar 

  5. Motter, A.E., Lai, Y.C.: Cascade-based attacks on complex networks. Phys. Rev. E 66, 065102 (2002)

    Article  Google Scholar 

  6. Motter, A.E.: Cascade control and defense in complex networks. Phys. Rev. Lett. 93, 098701 (2004)

    Article  Google Scholar 

  7. Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex networks. Phys. Rev. E 69, 045104 (2004)

    Article  Google Scholar 

  8. Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Phys. Rev. Lett. 100, 218701 (2008)

    Article  Google Scholar 

  9. Albert, R., Jeong, A.L.H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)

    Article  Google Scholar 

  10. Schläpfer, M., Dietz, S., Kaegi, M.: Stress induced degradation dynamics in complex networks. In: Proceedings of the International Conference on Infrastructure Systems. IEEE, Los Alamitos (2008)

    Google Scholar 

  11. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks: From biological nets to the internet and WWW. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  12. Birolini, A.: Reliability Engineering, Theory and Practice, 5th edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  13. Erdős, P., Rényi, A.: On random graphs. Publ. Math. Debrecen 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  14. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Taylor, A., Higham, D.J.: CONTEST: A controllable test matrix toolbox for MATLAB. University of Strathclyde Mathematics Research Report 13 (2007)

    Google Scholar 

  16. Smith, D.M.D., Lee, C.F., Onnela, J., Johnson, N.F.: Link-space formalism for network analysis. Phys. Rev. E 77, 036112 (2008)

    Article  Google Scholar 

  17. Matlab, The Language of Technical Computing, Version R2008a

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Schläpfer, M., Shapiro, J.L. (2009). Modeling Failure Propagation in Large-Scale Engineering Networks. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02469-6_89

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02469-6_89

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02468-9

  • Online ISBN: 978-3-642-02469-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics