Skip to main content

Nitrogen Metabolism and Excretion During Aestivation

  • Chapter
  • First Online:
Book cover Aestivation

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 49))

Abstract

In this chapter, up-to-date information on nitrogen metabolism and excretion in various aestivators is presented. Although aestivation involves long-term fasting and corporal torpor, adaptive responses with regard to excretory nitrogen metabolism exhibited by aestivators during aestivation differ from those exhibited by nonaestivators undergoing fasting or immobilization. Special efforts were made to address current issues pertaining to excretory nitrogen metabolism and related phenomena in aestivators. Adaptations exhibited by aestivators were discussed in relation to the induction, maintenance, and arousal phases of aestivation. For the induction phase, we included topics like urea as an internal induction signal for aestivation, alteration in the permeability of the skin to ammonia, and changes in rate of ammonia production and urea synthesis. For the maintenance phase, the emphasis was on protein synthesis and degradation, ammonia production, and urea synthesis and accumulation. For the arousal phase, the focus was on rehydration, urea excretion, and phenomena related to feeding. Adaptations exhibited by aestivators specifically to each of these three phases of aestivation are essential to the understanding of the overall aestivation process, but, at present, only limited information is available on excretory nitrogen metabolism in animals during the induction or arousal phases of aestivation. Therefore, future efforts should be made to identify adaptive responses particular to each of the three phases of aestivation in various aestivators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe AS (1995) Estivation in South American amphibians and reptiles. Braz J Med Biol Res 28:11–12

    Google Scholar 

  • Albrecht J, Norenberg MD (2006) Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology 44:788–794

    Article  CAS  PubMed  Google Scholar 

  • Amelio D, Garofalo F, Loong AM, Wong WP, Ip YK, Tota B, Cerra MC (2008) Differential NOS expression in the freshwater and aestivating lungfish Protopterus dolloi: heart versus kidney readjustments. Nitric Oxide 18:1–10

    Article  CAS  PubMed  Google Scholar 

  • Arad Z (2001) Desiccation and rehydration in land snails – a test for distinct set points in Theba pisana. Isr J Zool 47:41–53

    Google Scholar 

  • Barboza PS, Farley SD, Robbins CT (1997) Whole-body urea cycling and protein turnover during hyperphagia and dormancy in growing bears (Ursus americanus and U. arctos). Can J Zool 75:2129–2136

    Article  Google Scholar 

  • Bayomy MFF, Shalan AG, Bradshaw SD, Withers PC, Stewart T, Thompson G (2002) Water content, body weight and acid mucopolysaccharides, hyaluronidase and beta-glucuronidase in response to aestivation in Australian desert frogs. Comp Biochem Physiol A 131:881–892

    Article  CAS  Google Scholar 

  • Belkin DA (1965) Reduction of metabolic rate in response to starvation in the turtle Sternothaerus minor. Copeia 1965:367–368

    Article  Google Scholar 

  • Bishop SH, Ellis LL, Burcham JM (1983) Amino acid metabolism in molluscs. In: Hochachka PW (ed) The mollusca. Metabolic biochemistry and molecular biomechanics, vol I. Academic, New York, pp 243–327

    Google Scholar 

  • Booth DT (2006) Effect of soil type on burrowing behavior and cocoon formation in the green-striped burrowing frog, Cyclorana alboguttata. Can J Zool 84:832–838

    Article  Google Scholar 

  • Brooks SPJ, Storey KB (1995) Evidence for estivation specific proteins in Otala lacteal. Mol Cell Biochem 143:15–20

    Article  CAS  PubMed  Google Scholar 

  • Campbell JW (1973) Nitrogen excretion. In: Prosser CL (ed) Comparative animal physiology, 3rd edn. Saunders College Publishing, Philadelphia, p 16

    Google Scholar 

  • Campbell JW (1991) Excretory nitrogen metabolic. In: Prosser CL (ed) Comparative animal physiology. Environmental and metabolic animal physiology, 4th ed. Wiley-Liss Inc, New York, pp 277–324

    Google Scholar 

  • Campbell JW (1995) Excretory nitrogen metabolism in reptiles and birds. In: Walsh PJ, Wright PA (eds) Nitrogen metabolism and excretion. CRC, Boca Raton, pp 147–178

    Google Scholar 

  • Cartledge VA, Withers PC, Bradshaw SD (2008) Water balance and arginine vasotocin in the cocooning frog Cyclorana platycephala (Hylidae). Physiol Biochem Zool 81:43–53

    Article  CAS  PubMed  Google Scholar 

  • Carlisky NJ, Barrio A (1972) Nitrogen metabolism of the South American lungfish Lepidosiren paradoxa. Comp Biochem Physiol B 41:857–873

    Article  CAS  PubMed  Google Scholar 

  • Chew SF, Hong LN, Wilson JM, Randall DJ, Ip YK (2003a) Alkaline environmental pH has no effect on the excretion of ammonia in the mudskipper Periophthalmodon schlosseri but inhibits ammonia excretion in the related species Boleophthalmus boddaerti. Physiol Biochem Zool 76:204–214

    Article  CAS  PubMed  Google Scholar 

  • Chew SF, Chan NKY, Tam WL, Loong AM, Hiong KC, Ip YK (2004) Nitrogen metabolism in the African lungfish (Protopterus dolloi) aestivating in a mucus cocoon on land. J Exp Biol 207:777–786

    Article  CAS  PubMed  Google Scholar 

  • Chew SF, Gan J, Ip YK (2005a) Nitrogen metabolism and excretion in the swamp eel, Monopterus albus, during 6 or 40 days of estivation in mud. Physiol Biochem Zool 78:620–629

    Article  CAS  PubMed  Google Scholar 

  • Chew SF, Ho L, Ong TF, Wong WP, Ip YK (2005b) The African lungfish, Protopterus dolloi, detoxifies ammonia to urea during environmental ammonia exposure. Physiol Biochem Zool 78:31–39

    Article  CAS  PubMed  Google Scholar 

  • Chew SF, Ong TF, Ho L, Tam WL, Loong AM, Hiong KC, Wong WP, Ip YK (2003b) Urea synthesis in the African lungfish Protopterus dolloi: hepatic carbamoyl phosphate synthetase III and glutamine synthetase are up regulated by 6 days of aerial exposure. J Exp Biol 206:3615–3624

    Article  PubMed  Google Scholar 

  • Chew SF, Sim MY, Phua ZC, Wong WP, Ip YK (2007) Active ammonia excretion in the giant mudskipper, Periophthalmodon schlosseri (Pallas), during emersion. J Exp Zool A 307:357–369

    Google Scholar 

  • Chew SF, Wilson JM, Ip YK, Randall DJ (2006) Nitrogenous excretion and defense against ammonia toxicity. In: Val A, Almedia-Val V, Randall DJ (eds) The physiology of tropical fishes. Fish Physiology, vol 21. Academic, New York, pp 307–395

    Google Scholar 

  • Childs SG (2003) Muscle wasting. Ortho Nurs 22:251–257

    Article  Google Scholar 

  • Cooper JL, Plum F (1987) Biochemistry and physiology of brain ammonia. Physiol Rev 67:440–519

    CAS  PubMed  Google Scholar 

  • Costanzo JP, Lee RE (2005) Cryoprotection by urea in a terrestrially hibernating frog. J Exp Biol 208:4079–4089

    Article  PubMed  Google Scholar 

  • Cowen KJ, Storey KB (2002) Urea and KCl have differential effects on enzyme activities in liver and muscle of estivating versus nonestivating species. Biochem Cell Biol 80:745–755

    Article  Google Scholar 

  • Cramp RL, Franklin CE (2003) Is re-feeding efficiency compromised by prolonged starvation during aestivation in the green striped burrowing frog, Cyclorana alboguttata? J Exp Zool A 300:126–132

    Google Scholar 

  • Cramp RL, Franklin CE (2005) Arousal and re-feeding rapidly restores digestive tract morphology following aestivation in green-striped burrowing frogs. Comp Biochem Physiol A 142:451–460

    Article  CAS  Google Scholar 

  • Cramp RL, Franklin CE, Meyer EA (2005) The impact of prolonged fasting during aestivation on the structure of the small intestine in the green-striped burrowing frog, Cyclorana alboguttata. Acta Zoolog 86:13–24

    Article  Google Scholar 

  • DeLaney RG, Lahiri S, Fishman AP (1974) Aestivation of the African lungfish Protopterus aethiopicus: Cardiovascular and respiratory functions. J Exp Biol 61:111–128

    CAS  PubMed  Google Scholar 

  • Fishman AP, Pack AI, Delaney RG, Gallante RJ (1987) Estivation in Protopterus. In: Bemis WE, Burggren EE, Kemp NE (eds) The biology and evolution of lungfishes. Alan R. Liss, New York, pp 237–248

    Google Scholar 

  • Frick NT, Bystriansky JS, Ip YK, Chew SF, Ballantyne JS (2008a) Carbohydrate and amino acid metabolism in fasting and aestivating African lungfish (Protopterus dolloi). Comp Biochem Physiol 151:85–92

    Article  CAS  Google Scholar 

  • Frick NT, Bystriansky JS, Ip YK, Chew SF, Ballantyne JS (2008b) Lipid, ketone body and oxidative metabolism in the African lungfish, Protopterus dolloi, following 60 days of fasting and aestivation. Comp Biochem Physiol 151:93–101

    Article  CAS  Google Scholar 

  • Fuery CJ, Attwood PV, Withers PC, Yancey PH, Baldwin J, Guppy M (1997) Effects of urea on M4-lactate dehydrogenase from elasmobranches and urea-accumulating Australian desert frogs. Comp Biochem Physiol B 117:143–150

    Article  CAS  PubMed  Google Scholar 

  • Fuery CJ, Withers PC, Hobbs AA, Guppy M (1998) The role of protein synthesis during metabolic depression in the Australia desert frog Neobatrachus centralis. Comp Biochem Physiol A 119:469–476

    Article  CAS  Google Scholar 

  • Gregory PT (1982) Reptilian hibernation. In: Gans C, Pough FH (eds) Biology of the Reptilia. Physiology and physiological ecology, vol 13. Academic, New York, pp 53–154

    Google Scholar 

  • Griffith RW (1991) Guppies, toadfish, lungfish, coelacanths and frogs – a scenario for the evolution of urea retention in fishes. Environ Biol Fish 32:1–4

    Article  Google Scholar 

  • Grundy JE, Storey KB (1994) Urea and salt effects on enzymes from estivating and non-estivating amphibians. Mol Cell Biochem 131:9–17

    Article  CAS  PubMed  Google Scholar 

  • Grundy JE, Storey KB (1998) Antioxidant defenses and lipid peroxidation damage in estivating toads, Scaphiopus couchii. J Comp Physiol B 168:132–142

    Article  CAS  PubMed  Google Scholar 

  • Guppy M, Reeves DC, Bishop T, Withers P, Buckingham JA, Brand MD (2000) Intrinsic metabolic depression in cells isolated from the hepatopancreas of estivating snails. FASEB J 14:999–1004

    CAS  PubMed  Google Scholar 

  • Guppy M, Withers P (1999) Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biol Rev 74:1–40

    Google Scholar 

  • Hailey A, Loveridge JP (1997) Metabolic depression during dormancy in the African tortoise Kinixyss pekii. Can J Zool 75:1328–1335

    Article  Google Scholar 

  • Hand SC, Somero GN (1982) Urea and methylamine effects on rabbit muscle phosphofructokinase. J Biol Chem 257:734–741

    CAS  PubMed  Google Scholar 

  • Harlow HJ, Lohuis T, Beck TS, Laizzo PA (2001) Muscle strength in overwintering bears. Nature 409:997

    Article  CAS  PubMed  Google Scholar 

  • Hermenegildo C, Monfort P, Felipo V (2000) Activation of NMDA receptors in rat brain in vivo following acute ammonia intoxication: characterization by in vivo brain microdialysis. Hepatology 31:709–715

    Article  CAS  PubMed  Google Scholar 

  • Herrero-Yraola A, Bakhit SMA, Franke P, Weise C, Schweiger M, Jorcke D, Ziegler M (2001) Regulation of glutamate dehydrogenase by reversible ADP-riboysylation in mitochondria. EMBO J 20:2404–2412

    Article  CAS  PubMed  Google Scholar 

  • Hiong KC, Loong AM, Chew SF, Ip YK (2005) Urea synthesis and activities of ornithine-urea cycle enzymes in the giant African snail Achatina fulica during 23 days of fasting or aestivation. J Exp Zool 303A:1040–1053

    Article  CAS  Google Scholar 

  • Hochachka PW, Somero GN (1984) Biochemical adaptation. Princeton University Press, Princeton

    Google Scholar 

  • Horne FB (1971) Accumulation of urea by a pulmonate snail during estivation. Comp Biochem Physiol A 38:565–570

    Article  CAS  Google Scholar 

  • Horne FB (1973a) The utilization of foodstuffs and urea production by a land snail during estivation. Biol Bull 144:321–330

    Article  CAS  Google Scholar 

  • Horne FB (1973b) Urea metabolism in an estivating terrestrial snail Bulimulus dealbatus. Am J Physiol 224:781–787

    Google Scholar 

  • Hudson NJ, Franklin CE (2002a) Effect of aestivation on muscle characteristics and locomotor performance in the green-striped burrowing frog Cycolorana alborguttata. J Comp Physiol B 172:177–182

    Article  CAS  PubMed  Google Scholar 

  • Hudson NJ, Franklin CE (2002b) Maintaining muscle mass during extended disuse: aestivating frogs as model species. J Exp Biol 205:2297–2303

    PubMed  Google Scholar 

  • Hudson NJ, Franklin CE (2003) Preservation of three-dimensional capillary structure in frog muscle during aestivation. J Anat 202:471–474

    Article  PubMed  Google Scholar 

  • Hudson NJ, Lavidis NA, Choy PT, Franklin CE (2005) Effect of prolonged inactivity on skeletal motor nerve terminals during aestivation in the burrowing frog, Cyclorana alboguttata. J Comp Physiol A 191:373–379

    Article  Google Scholar 

  • Hudson NJ, Lehnert SA, Ingham AB, Symonds B, Franklin CE, Harper GS (2006) Lessons from an estivating frog: sparing muscle protein despite starvation and disuse. Am J Physiol 290:R836–R843

    CAS  Google Scholar 

  • Hudson NJ, Lonhienne TGA, Franklin CE, Harper GS, Lehnert SA (2008) Epigenetic silencers are enriched in dormant desert frog muscle. J Comp Physiol B 178:729–734

    Article  PubMed  Google Scholar 

  • Hung CYC, Galvez F, Ip YK, Wood CM (2009) A facilitated diffusion urea transporter in the skin of the African lungfish, Protopterus annectens. J Exp Biol 212:1202–1211

    Article  CAS  PubMed  Google Scholar 

  • Icardo JM, Amelio D, Garofalo F, Colvee E, Cerra MC, Wong WP, Tota B, Ip YK (2008) The structural characteristics of the heart ventricle of the African lungfish Protopterus dolloi: freshwater and aestivation. J Anat 213:106–119

    Article  PubMed  Google Scholar 

  • Iftikar FI, Patel M, Ip YK, Wood CM (2007) The influence of feeding on aerial and aquatic oxygen consumption, nitrogenous waste excretion, and metabolic fuel usage in the African lungfish, Protopterus annectens. Can J Zool 86:790–800

    Article  CAS  Google Scholar 

  • Ip YK, Chew SF, Randall DJ (2001) Ammonia toxicity, tolerance and excretion. In: Wright PA, Anderson PM (eds) Fish physiology. Nitrogen excretion, vol 19. Academic, New York, pp 109–148

    Chapter  Google Scholar 

  • Ip YK, Chew SF, Randall DJ (2004a) Five tropical air-breathing fishes, six different strategies to defend against ammonia toxicity on land. Physiol Biochem Zool 77:768–782

    Article  CAS  PubMed  Google Scholar 

  • Ip YK, Chew SF, Wilson JM, Randall DJ (2004b) Defences against ammonia toxicity in tropical air-breathing fishes exposed to high concentrations of environmental ammonia: a review. J Comp Physiol 174:565–575

    CAS  Google Scholar 

  • Ip YK, Peh BK, Tam WL, Lee SLM, Chew SF (2005a) Changes in salinity and ionic compositions act as environmental signals to induce a reduction in ammonia production in the African lungfish Protopterus dolloi. J Exp Zool A 303:456–463

    Article  CAS  Google Scholar 

  • Ip YK, Peh BK, Tam WL, Wong WP, Chew SF (2005b) Effects of intra-peritoneal injection with NH4Cl, urea or NH4Cl+urea on nitrogen excretion and metabolism in the African lungfish Protopterus dolloi. J Exp Zool A 303:272–282

    Article  CAS  Google Scholar 

  • Ip YK, Randall DJ, Kok TKT, Bazarghi C, Wright PA, Ballantyne JS, Wilson JM, Chew SF (2004c) The mudskipper Periophthalmodon schlosseri facilitates active NH +4 excretion by increasing acid excretion and decreasing NH3 permeability in the skin. J Exp Biol 207:787–801

    Article  CAS  PubMed  Google Scholar 

  • Ip YK, Subaidah RM, Liew PC, Loong AM, Hiong KC, Wong WP, Chew SF (2004d) African sharptooth catfish Clarias gariepinus does not detoxify ammonia to urea or amino acids but actively excretes ammonia during exposure to environmental ammonia. Physiol Biochem Zool 77:242–254

    Article  CAS  PubMed  Google Scholar 

  • Ip YK, Yeo PJ, Loong AM, Hiong KC, Wong WP, Chew SF (2005c) The interplay of increased urea synthesis and reduced ammonia production in the African lungfish Protopterus aethiopicus during 46 days of aestivation in a mucus cocoon on land. J Exp Zool A 303:1054–1065

    Article  CAS  Google Scholar 

  • Janssens PA (1964) The metabolism of the aestivating African lungfish. Comp Biochem Physiol 11:105–117

    Article  CAS  PubMed  Google Scholar 

  • Janssens PA, Cohen PP (1966) Ornithine-urea cycle enzymes in the African lungfish Protopterus aethiopicus. Science 152:358–359

    Article  CAS  PubMed  Google Scholar 

  • Janssens PA, Cohen PP (1968a) Biosynthesis of urea in the estivating African lungfish and in Xenopus laevis under conditions of water shortage. Comp Biochem Physiol 24:887–898

    Article  CAS  PubMed  Google Scholar 

  • Janssens PA, Cohen PP (1968b) Nitrogen metabolism in the African lungfish. Comp Biochem Physiol 24:879–886

    Article  CAS  PubMed  Google Scholar 

  • Jones RM (1980) Metabolic consequences of accelerated urea synthesis during seasonal dormancy of spadefoot toads, Scaphiopus couchii and Scaphiopus multiplicatus. J Exp Zool 212:255–267

    Article  CAS  Google Scholar 

  • Kennett R, Christian K (1994) Metabolic depression in estivating long-neck turtles (Chelodina rugosa). Physiol Zool 67:1087–1102

    Google Scholar 

  • Kostal V, Sula J, Simek P (1998) Physiology of drought tolerance and cold hardiness of the Mediterranean tiger moth Cymbalophora pudica during summer diapause. J Insect Physiol 44:165–173

    Article  CAS  PubMed  Google Scholar 

  • Land SC, Bernier NJ (1995) Estivation: mechanisms and control of metabolic suppression. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes, vol 5. Elsevier, Amsterdam, pp 381–412

    Google Scholar 

  • Lim CK, Wong WP, Lee SLM, Chew SF, Ip YK (2004) The ammonotelic African lungfish, Protopterus dolloi, increases the rate of urea synthesis and becomes ureotelic after feeding. J Comp Physiol B 174:555–564

    CAS  PubMed  Google Scholar 

  • Long DR (1985) Lipid utilization during reproduction in female Kinosternon flavescens. Herpetologica 41:58–65

    Google Scholar 

  • Loong AM, Ang SF, Wong WP, Pörtner HO, Bock C, Wittig R, Bridges CR, Chew SF, Ip YK (2008a) Effects of hypoxia on the energy status and nitrogen metabolism of African lungfish during aestivation in a mucus cocoon. J Comp Physiol B 178:853–865

    Article  CAS  PubMed  Google Scholar 

  • Loong AM, Hiong KC, Lee SML, Wong WP, Chew SF, Ip YK (2005) Ornithine-urea cycle and urea synthesis in African lungfishes, Protopterus aethiopicus and Protopterus annectens, exposed to terrestrial conditions for 6 days. J Exp Zool A 303:354–365

    Article  CAS  Google Scholar 

  • Loong AM, Pang CYM, Hiong KC, Wong WP, Chew SF, Ip YK (2008b) Increased urea synthesis and/or suppressed ammonia production in the African lungfish, Protopterus annectens: aestivation in air versus aestivation in mud. J Comp Physiol B 178:351–363

    Article  CAS  PubMed  Google Scholar 

  • Loong AM, Tan JYL, Hiong KC, Wong WP, Chew SF, Ip YK (2007) Defense against environmental ammonia toxicity in the African lungfish, Protopterus aethiopicus: bimodal breathing, skin ammonia permeability and urea synthesis. Aquat Toxicol 85:76–86

    Article  CAS  PubMed  Google Scholar 

  • Machin J (1975) Water relationships. In: Fretter V, Peake J (eds) The Pulmonates, vol 1. Academic, New York, pp 105–163

    Google Scholar 

  • McClanahan L (1967) Adaptations of the spadefoot toad, Scaphiopus couchii, to desert environments. Comp Biochem Physiol 20:73–79

    Article  CAS  Google Scholar 

  • McDonald MD, Smith CP, Walsh PJ (2006) The physiology and evolution of urea transport in fishes. J Membr Biol 212:93–107

    Article  CAS  PubMed  Google Scholar 

  • McKinnell IW, Rudnicki MA (2004) Molecular mechanisms of muscle atrophy. Cell 119:907–910

    Article  CAS  PubMed  Google Scholar 

  • Mommsen TP, Walsh PJ (1989) Evolution of urea synthesis in vertebrates: the piscine connection. Science 243:72–75

    Article  CAS  PubMed  Google Scholar 

  • Muir TJ, Costanzo JP, Lee RE Jr (2007) Osmotic and metabolic responses to dehydration and urea-loading in a dormant, terrestrially-hibernating frog. J Comp Physiol B 177:917–926

    Article  CAS  PubMed  Google Scholar 

  • Muir TJ, Costanzo JP, Lee RE Jr (2008) Metabolic depression induced by urea in organs of the wood frog, Rana sylvatica: effects of season and temperature. J Exp Zool A 309:111–116

    Google Scholar 

  • Ojeda JL, Wong WP, Ip YK, Icardo JM (2008) The renal corpuscle of the African lungfish Protopterus dolloi: Structural, histochemical and immunofluorescence modification during aestivation. Anat Rec 291:1156–1172

    Article  Google Scholar 

  • Pakay JL, Withers PC, Hobbs AA, Guppy M (2002) In vivo down regulation of protein synthesis in the snail Helix apersa during estivation. Am J Physiol 283:R197–R204

    CAS  Google Scholar 

  • Peterson CC, Stone PA (2000) Physiological capacity for estivation of the Sonoran mud turtle, Kinosternon sonoriense. Copeia 2000(3):684–700

    Article  Google Scholar 

  • Perry SF, Euverman R, Wang T, Loong AM, Chew SF, Ip YK, Gilmour KM (2008) Control of breathing in African lungfish (Protopterus dolloi): a comparison of aquatic and cocooned (terrestrialized) animals. Resp Physiol Neurobiol 160:8–17

    Article  CAS  Google Scholar 

  • Perry SF, Gilmour KM, Vulesevic B, McNeil B, Chew SF, Ip YK (2005) Circulating catecholamines in hypoxic lungfish (Protopterus dolloi): a comparison of aquatic and aerial hypoxia. Physiol Biochem Zool 78:325–334

    Article  CAS  PubMed  Google Scholar 

  • Randall DJ, Wilson JM, Peng KW, Kok TWK, Kuah SSL, Chew SF, Lam TJ, Ip YK (1999) The mudskipper, Periophthalmodon schlosseri, actively transports NH +4 against a concentration gradient. Am J Physiol 277:R1562–R1567

    CAS  PubMed  Google Scholar 

  • Rees BB, Hand SC (1993) Biochemical correlates of estivation tolerance in the mountain snail Oreohelix (Pulmonata: Oreohelicidae). Biol Bull 184:230–242

    Article  Google Scholar 

  • Riddle WA (1983) Physiological ecology of land snails and slugs. In: Russell-Hunter WD (ed) The mollusca, vol 6. Academic, New York, pp 431–461

    Google Scholar 

  • Röszer T, Czimmerer Z, József Szentmiklósi A, Bánfalvi G (2004) Nitric oxide synthesis is blocked in the enteral nervous system during dormant periods of the snail Helix lucorum. Cell Tissue Res 316:255–262

    Article  PubMed  CAS  Google Scholar 

  • Röszer T, Kiss-Tóth E, József Szentmiklósi A, Bánfalvi G (2005) Seasonal periodicity of enteric nitric oxide synthesis and its regulation in the snail Helix lucorum. Invert Biol 124:18–24

    Article  Google Scholar 

  • Sands JM (2003a) Molecular mechanisms of urea transport. J Membr Biol 191:149–163

    Article  CAS  PubMed  Google Scholar 

  • Sands JM (2003b) Mammalian urea transporters. Annu Rev Physiol 65:543–566

    Article  CAS  PubMed  Google Scholar 

  • Schliess F, Foster N, Görg B, Reinehr R, Haussinger D (2004) Astrocyte swelling increases protein tyrosine nitration in cultured rat astrocytes. Glia 47:21–29

    Article  PubMed  Google Scholar 

  • Seidel ME (1978) Terrestrial dormancy in the turtle Kinosternon flavescens: respiratory metabolism and dehydration. Comp Biochem Physiol A 61:1–4

    Article  Google Scholar 

  • Shalan AG, Bradshaw SD, Withers PC, Thompson G, Bayomy MFF, Bradshaw FJ, Stewart T (2004) Spermatogenesis and plasma testosterone levels in Western Australian burrowing desert frogs Cyclorana platycephala, Cyclorana maini, and Neobatrachus sutor, during aestivation. Gen Comp Endocrinol 136:90–100

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker VH, Balding D, Ruibal R, McClanahan LL Jr (1972) Uricotelism and low evaporative water loss in a South American frog. Science 175:1018–1020

    Article  CAS  PubMed  Google Scholar 

  • Sievert LM, Sievert GA, Cupp PV Jr (1988) Metabolic rates of feeding and fasting juvenile midland painted turtles, Chrysemys picta marginata. Comp Biochem Physiol A 90:157–159

    Article  CAS  PubMed  Google Scholar 

  • Smith HW (1930) Metabolism of the lungfish Protopterus aethiopicus. J Biol Chem 88:97–130

    CAS  Google Scholar 

  • Smith HW (1935) The metabolism of the lungfish. II Effect of feeding meat on metabolic rate. J Cell Comp Physiol 6:335–349

    Article  CAS  Google Scholar 

  • Staples JF, Kajimura M, Wood CM, Patel M, Ip YK, McClelland GB (2008) Enzymatic and mitochondrial responses to five months of aerial exposure in the slender lungfish (Protopterus dolloi). J Fish Biol 73:608–622

    Article  CAS  Google Scholar 

  • Storey KB (2002) Life in the slow lane: molecular mechanisms of estivation. Comp Biochem Physiol A 133:733–754

    Article  Google Scholar 

  • Storey KB, Storey JM (1990) Facultative metabolic rate depression: molecular regulation and biochemical adaptation in anaerobiosis, hibernation, and estivation. Q Rev Biol 65:145–174

    Article  CAS  PubMed  Google Scholar 

  • Storey KB, Storey JM (2004) Metabolic rate depression in animals: transcriptional and translational controls. Biol Rev Camb Philos Soc 79:207–233

    Article  PubMed  Google Scholar 

  • Symonds BL, James RS, Franklin CE (2007) Getting the jump on skeletal muscle disuse atrophy: preservation of contractile performance in aestivating Cyclorana alboguttata (Günther 1867). J Exp Biol 210:825–835

    Article  PubMed  Google Scholar 

  • Tay SLA, Chew SF, Ip YK (2003) The swamp eel Monopterus albus reduces endogenous ammonia production and detoxifies ammonia to glutamine during aerial exposure. J Exp Biol 206:2473–2486

    Article  CAS  PubMed  Google Scholar 

  • Tay YL, Loong AM, Hiong KC, Lee SJ, Tng YYM, Wee NLJ, Lee SLM, Wong WP, Chew SF, Wilson JM, Ip YK (2006) Active ammonia transport and excretory nitrogen metabolism in the climbing perch, Anabas testudineus, during 4 days of emersion or 10 minutes of forced exercise on land. J Exp Biol 209:4475–4489

    Article  CAS  PubMed  Google Scholar 

  • Tinker D, Harlow H, Beck T (1998) Protein use and muscle fiber changes in free ranging, hibernating black bears. Physiol Zool 71:414–424

    Article  CAS  PubMed  Google Scholar 

  • Tracy CR, Reynolds SJ, McArthur L, Christian KA (2007) Ecology of aestivation in a cocoon-forming frog, Cyclorana australis (Hylidae). Copeia 4:901–912

    Article  Google Scholar 

  • Ultsch GR (1989) Ecology and physiology of hibernation and overwintering among freshwater fishes, turtles, and snakes. Biol Rev Camb Philos Soc 64:435–516

    Article  Google Scholar 

  • Wickler S, Hoyt D, Breukelen FV (1991) Disuse atrophy in the hibernating golden mantled ground squirrel, Spermophilus lateralis. Am J Physiol 261:R1214–R1217

    CAS  PubMed  Google Scholar 

  • Wilkie MP, Morgan TP, Galvez F, Smith R, Kajimura M, Ip YK, Wood CM (2007) Ionic and osmotic regulation in the slender African lungfish on land occur across the ventral body surface. Physiol Biochem Zool 80:90–112

    Article  Google Scholar 

  • Withers PC (1993) Metabolic depression during estivaiton in the Australian frogs, Neobatrahus and Cyclorana. Aus J Zool 41:467–473

    Article  Google Scholar 

  • Withers PC (1995) Cocoon formation and structure in the estivating Australian desert frogs, Neobatrachus and Cyclorana. Aus J Zool 43:429–441

    Article  Google Scholar 

  • Wither PC (1998) Urea: diverse functions of a “waste” product. Clin Exp Pharmacol Physiol 25:722–727

    Article  Google Scholar 

  • Withers PC, Guppy M (1996) Do Australian desert frogs co-accumulate counteracting solutes with urea during aestivation? J Exp Biol 199:1809–1816

    CAS  PubMed  Google Scholar 

  • Wood CM, Walsh PJ, Chew SF, Ip YK (2005a) Ammonia tolerance in the slender lungfish (Protopterus dolloi): the importance of environmental acidification. Can J Zool 83:507–517

    Article  CAS  Google Scholar 

  • Wood CM, Walsh PJ, Chew SF, Ip YK (2005b) Greatly elevated urea excretion after air exposure appears to be carrier mediated in the slender lungfish (Protopterus dolloi). Physiol Biochem Zool 78:893–907

    Article  CAS  PubMed  Google Scholar 

  • Wright PA (2007) Ionic, osmotic and nitrogenous waste regulation. In: McKincy DJ, Farrell AP, Colin J (eds) Primitive fishes. Fish physiology, vol 26. Academic, New York, pp 283–318

    Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    Article  CAS  PubMed  Google Scholar 

  • Yang HS, Yuan XT, Zhou Y, Mao YZ, Zhang T, Liu Y (2005) Effects of body size and water temperature on food consumption an growth in the sea cucumber Apostichopus japonicus (Selenka) with special reference to aestivation. Aqua Res 36:1085–1092

    Article  Google Scholar 

  • Yang HS, Zhou Y, Zhang T, Yuan XT, Li XX, Liu Y, Zhang FS (2006) Metabolic characteristics of sea cucumber Apostichopus japonicus (Selenka) during aestivation. J Exp Mar Biol Ecol 330:505–510

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. K. Ip .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ip, Y.K., Chew, S.F. (2010). Nitrogen Metabolism and Excretion During Aestivation. In: Arturo Navas, C., Carvalho, J. (eds) Aestivation. Progress in Molecular and Subcellular Biology, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02421-4_4

Download citation

Publish with us

Policies and ethics